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Preface

The Third International Workshop on Traffic Monitoring and Analysis (TMA
2011) was an initiative of the COST Action IC0703 “Data Traffic Monitoring and
Analysis: Theory, Techniques, Tools and Applications for the Future Networks”
http://www.tma-portal.eu/cost-tma-action.

The COST program is an intergovernmental framework for European Co-
operation in Science and Technology, promoting the coordination of nationally
funded research on a European level. Each COST Action aims at reducing the
fragmentation in research and opening the European research area to coopera-
tion worldwide.

Traffic monitoring and analysis (TMA) is nowadays an important research
topic within the field of computer networks. It involves many research groups
worldwide that are collectively advancing our understanding of the Internet.
Modern packet networks are highly complex and ever-evolving objects. Under-
standing, developing and managing such infrastructures is difficult and expensive
in practice. Traffic monitoring is a key methodology for understanding telecom-
munication technology and improving its operation, and TMA-based techniques
can play a key role in the operation of real networks. Besides its practical impor-
tance, TMA is an attractive research topic for several reasons. First, the inherent
complexity of the Internet has attracted many researchers to face traffic measure-
ments since the pioneering times. Second, TMA offers a fertile ground for the-
oretical and cross-disciplinary research, such as the various analysis techniques
being imported into TMA from other fields, while at the same time providing
a clear perspective for the practical exploitation of the results. In other words,
TMA research has the potential to reconcile theoretical investigations with real-
world applications, and to realign curiosity-driven with problem-driven research.

In the spirit of the COST program, the COST-TMA Action was launched
in 2008 to promote building a research community in the specific field of TMA.
Today, it involves research groups from academic and industrial organizations
from 25 countries in Europe.

The goal of the TMA workshops is to open the COST Action research and
discussions to the worldwide community of researchers working in this field.
Following the success of the first two editions of the TMA workshop in 2009 and
2010, we decided to maintain the same format for this third edition: single-track
full-day program. TMA 2011 was organized jointly with the European Wireless
conference and was held in Vienna on April 27, 2011.

TMA 2011 attracted 29 submissions. Each paper was carefully reviewed by at
least three members of the Technical Program Committee. The reviewing process
led to the acceptance of ten papers as full papers and four as short papers. Short
papers are works that provide promising results or justify discussion during the
workshop, but lack technical maturity to be accepted as full papers. Finally, this
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year’s workshop included a poster session. This poster session welcomes work-
in-progress work from academia as well as industry. Early experimental results,
insights, and prototypes are also of interest. Six posters were accepted.

We would like to thank all members of the Technical Program Committee
for their timely and thorough reviews. We hope you will enjoy the workshop and
make this event a success!

April 2011 Jordi Domingo-Pascual
Yuval Shavitt

Steve Uhlig



Organization

Program Committee Chairs

Jordi Domingo-Pascual Technical University of Catalonia (UPC),
Spain

Yuval Shavitt Tel Aviv University, Israel
Steve Uhlig TU Berlin/T-labs, Germany

Program Committee

Pere Barlet-Ros Technical University of Catalonia (UPC),
Spain

Ernst Biersack Eurécom, France
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Todd Shipley

Traffic Classification

Early Classification of Network Traffic through Multi-classification . . . . . 122
Alberto Dainotti, Antonio Pescapé, and Carlo Sansone
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On Profiling Residential Customers

Marcin Pietrzyk1, Louis Plissonneau1,
Guillaume Urvoy-Keller2, and Taoufik En-Najjary1

1 Orange Labs, France
{marcin.pietrzyk,louis.plissonneau,
taoufik.ennajjary}@orange-ftgroup.com

2 Université de Nice Sophia-Antipolis, Laboratoire I3S CNRS UMR 6070, France
urvoy@unice.fr

Abstract. Some recent large scale studies on residential networks (ADSL and
FTTH) have provided important insights concerning the set of applications used
in such networks. For instance, it is now apparent that Web based traffic is dom-
inating again at the expense of P2P traffic in lots of countries due to the surge
of HTTP streaming and possibly social networks. In this paper we confront the
analysis of the overall (high level) traffic characteristics of the residential network
with the study of the users traffic profiles. We propose approaches to tackle those
issues and illustrate them with traces from an ADSL platform. Our main findings
are that even if P2P still dominates the first heavy hitters, the democratization of
Web and Streaming traffic is the main cause of the come-back of HTTP. More-
over, the mixture of applications study highlights that these two classes (P2P
vs. Web + Streaming) are almost never used simultaneously by our residential
customers.

1 Introduction

The research community has devoted significant efforts to profile residential traffic in
the last couple of years. A large scale study of Japanese residential traffic [5,4], where
almost 40% of the Internet traffic of the island is continuously observed, has revealed
specific characteristics of the Japanese traffic: a heavy use of dynamic ports, which
suggests a heavy use of P2P applications and a trend of users switching from ADSL to
FTTH technology to run P2P along with gaming applications. A recent study in the US
[6], where the traffic of 100K DSL users has been profiled with a Deep Packet Inspec-
tion tool, has revealed that HTTP traffic is now the dominant protocol at the expense of
P2P for the considered ISP, and probably for the US in general. This significant change
in the traffic breakdown is not due to a decrease of P2P traffic intensity but a surge of
HTTP traffic driven by HTTP streaming services like YouTube and Dailymotion. Sim-
ilar results have been obtained in European countries. In Germany, a recent study [11]
analyzed about 30K ADSL users and also observed that HTTP was again dominant at
the expense of P2P traffic, for the same reason as in the US: a surge of video content
distribution over HTTP. Early studies in France [15] for an ADSL platform of about
4000 users highlighted the dominance of P2P traffic in 2007 but a subsequent studies

J. Domingo-Pascual, Y. Shavitt, and S. Uhlig (Eds.): TMA 2011, LNCS 6613, pp. 1–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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on the same PoP [14] or other PoPs under the control of the same ISP revealed similar
traffic trend of HTTP traffic increasing at the expense of P2P both for ADSL [12] and
FTTH access technology [17]. In the above studies, the application profiling of resi-
dential traffic was used to inform network level performance aspects, e.g., cachability
[6] of content or location in the protocol stack of the bottleneck of transfers performed
on ADSL networks [15], [11]. The study in [11] further reports on usage of the ADSL
lines with a study of the duration of Radius sessions.

The current work aims at filling the gap between the low-level (network) level per-
formance study and high level (application) study by profiling ADSL users. We use
hierarchical clustering techniques to aggregate users’ profiles according to their appli-
cation mix. Whereas many studies focus on communication profiles on backbone links,
few ones dig into application mix at user level. In the analysis carried in [10], the au-
thors take a graphlet approach to profile end-host systems based on their transport-layer
behavior, seeking users clusters and “significant” nodes. Authors in [8], take advantage
of another clustering technique (namely Kohonen Self-Organizing Maps) to infer cus-
tomers application profiles and correlate them with other variables (e.g. geographical
location, customer age).

Our raw material consists of two packet traces collected on the same platform, a few
months apart from each other, that are fully indexed in the sense that both IP to user and
connection to applications mapping are available. We use this data to discuss different
options to profile both a platform and the users of this platform.

The remaining of this paper is organized as follows. In Sect. 2, we detail our data
sets. In Sect. 3, we analyze high level traffic characteristics and, the contributions of
users to the traffic per application. In Sect. 4, we discuss different options to profile
users and come up with a specific approach that allows to understand application usage
profiles.

2 Data Set

The raw data for our study consists of two packet level traces collected on an ADSL
platform of a major ISP in France (Tab. 1). Each trace lasts one hour and aggregates all
the traffic flowing in and out of the platform.

In this platform, ATM is used and each user is mapped to a unique pair of Virtual
Path, Virtual Channel, identifiers. As the packet level trace incorporates layer 2 infor-
mation, we can identify users thanks to this ATM layer information. This approach
allows for reliable users tracking. Indeed, 18% of the users change their IP address at

Table 1. Traces summary

Label Start time Duration Bytes Flows
TCP TCP Local Local Distant
Bytes Flows Users IPs IPs

Set A 2009-03-24 10:53 (CET) 1h 31.7G 501K 97.2 % 30.7 % 1819 2223 342K
Set B 2009-09-09 18:20 (CET) 1h 41 G 796K 93.2 % 18.3 % 1820 2098 488K
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least once, with a peak at 9 for one specific user. One could expect that the only source
of error made when considering the IP address is that the session of the user is split
onto several IP level sessions. However, we also noticed in our traces that a given IP
could be reassigned to different users during the periods of observation. Specifically,
3% of the IPs were assigned to more than one user, with a peak of 18 re-assignments
for one specific IP. Those results are in line with the ones obtained in [11] for a German
residential operator.

Both traces are indexed thanks to a Deep Packet Inspection (DPI) tool developed
internally by the ISP we consider. This tool is called ODT. In [13], we have compared
ODT to Tstat (http://tstat.tlc.polito.it/), whose latest version features
DPI functions. Specifically, we have shown that ODT and Tstat v2 offer similar per-
formance (for most popular applications) and outperform signature based tools used in
the literature. As ODT embeds a larger set of signatures than Tstat v2, we rely on the
former to map flows and applications.

The classes of traffic we use along with the corresponding applications are reported
in Tab. 2. Note that HTTP traffic is broken into several classes depending on the appli-
cation implemented on top: Webmail is categorized as mail, HTTP streaming as stream-
ing, HTTP file transfers as DOWNLOAD, etc. The OTHERS class aggregates less
popular applications that ODT recognized. The DOWNLOAD class consists mainly
of HTTP large file transfers from one-click hosting services [1], which are growing
competitors of P2P file sharing services. The flows not classified by ODT (e.g. some
encrypted applications) are aggregated in the UNKNOWN class.

We developed an ad-hoc C++ trace parser that relies on libpcap to extract the per
user statistics from the raw traces. Users’ data was anonymized prior to analysis.

Table 2. Application classes

Class Application/protocol

WEB HTTP and HTTPs browsing
UNKNOWN –
P2P eDonkey, eMule obfuscated, Bittorrent

Gnutella, Ares, Others
MAIL SMTP, POP3, IMAP, IMAPs

POP3s, HTTP Mail
CHAT MSN, IRC, Jabber

Yahoo Msn, HTTP Chat
STREAMING HTTP Streaming, Ms. Media Server,

iTunes, Quick Time
OTHERS NBS, Ms-ds, Epmap, Attacks
DB LDAP, Microsoft SQL, Oracle SQL, mySQL
DOWNLOADS HTTP file transfer, Ftp-data, Ftp control
GAMES NFS3, Blizzard Battlenet, Quake II/III

Counter Strike, HTTP Games
VOIP Skype
NEWS Nntp
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Table 3. Traffic Breakdown (Classes with more than 1% of bytes only)

Set A Set B
Class Bytes Bytes

WEB 22.68 % 20.67 %
P2P 37.84 % 28.69 %
STREAMING 25.9 % 24.91 %
DOWNLOAD 4.31 % 6.47 %
MAIL 1.45 % 0.54 %
OTHERS 1.04 % 0.44 %
VOIP 0.36 % 1.67 %
UNKNOWN 5.26 % 15.79 %

3 Platform Profile

In this section, we highlight high level platform traffic profiles, namely the traffic break-
down and the per users volume distribution.

3.1 Traffic Breakdown

We report in Tab. 3 the bytes breakdown views of the two traces, where the DB, CON-
TROL, NEWS, CHAT and GAMES classes have been omitted as they do not represent
more than 1% of bytes and flows in any of the traces. It has been observed in [6] and
[11] that HTTP based traffic was again dominating at the expense of P2P traffic in resi-
dential networks in US and Europe. The traffic breakdown of our platform suggests the
same conclusion. Indeed, when summing all HTTP-based traffic in sets A or B, namely
Web, HTTP Streaming and HTTP Download, more than 50% of the bytes in the down
direction is carried over HTTP. Clearly, HTTP driven traffic dominates at the expense
of background traffic that is due to P2P applications.

3.2 Distributions of Volumes per User

Understanding the relative contribution of each user to the total amount of bytes gen-
erated by dominating applications is important. Indeed these results, even if not sur-
prising, justify the approach of focusing on heavy hitters1 in the last section of the
paper.

In Fig. 1, we present the contribution of users to the total traffic aggregate per appli-
cation, with users sorted by decreasing volumes for the considered application (sets A
and B being similar we focus on set A here). Note that we sum up, for a user, her bytes
in both directions. We also include in the graph the overall contribution by user without
distinguishing per application.

The fraction of users contributing to the majority of bytes in each application and
even overall is fairly small. When looking at the global volumes generated, 90% of the

1 We term as heavy hitter user that is responsible for large fraction of bytes transfered on the
platform.
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Fig. 1. Contribution of users to traffic aggregate (global and per application). Set A.

bytes are generated by about 18% of users. For the same volume quantile, the fraction
of users involved is even smaller when focusing on the applications generating most of
the bytes (those represented in the graph). For the case of P2P traffic for instance, only
0.3% of the users contribute to 90% of the bytes uploaded or downloaded. We confirm
here the well known phenomenon explored for instance in [7,3]. This also holds for the
Streaming and Web classes, which are two key classes in the dimensioning process of
links of ISPs (for example bulk of Streaming users is active in the evenings).

A consequence of these highly skewed distributions is that the arrival or departure of
some customers on the platform can potentially have an important impact on the traffic
shape. For instance, the first four heavy users of streaming are responsible for about
30% of all streaming traffic.

The above observations also motivates our approach in the next section which is
on profiling customers (and especially heavy hitters) from their application usage
perspective.

4 Users Profiling

In this section, we address the issue of building an application level profile of customers
that would characterize their network usage. The problem is challenging as it can be ad-
dressed from many different viewpoints. Here are some questions that one might want
to answer: Which amount of bytes or alternatively which number of flows should be
observed to declare that a user is actually using a specific application? Can we charac-
terize users thanks to the dominant application they use? What is the typical application
profile of a heavy hitter? What is the typical application mix of the users?

We address the above questions in the next paragraphs. We discuss several options
to map applications to users. Our first approach focuses on the dominating applica-
tions for each user, we further discuss the precise profile of the top ten heavy hitters in
both traces. Last paragraph presents typical users application mixture using clustering
technique.
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4.1 Users Dominating Application

We present here a simple approach that provides an intuitive high level overview of the
users activity: we label each user with her dominating application, the application that
generated the largest fraction of bytes. Such an approach is justified by the fact that
for both of our data sets, the dominating application explains a significant fraction of
the bytes of the user. Indeed, for over 75% of the users, it explains more than half of
the bytes. This phenomenon is even more pronounced when considering heavy users.
Fig. 2 presents the distribution of the fraction of the bytes explained depending on which
application dominates users activity.
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Fig. 2. CDF of the fraction of bytes explained by the dominant application of each user. Set B.

The distribution of users per application with such an approach (dominant applica-
tion) is reported in Tab. 4. As expected, the dominating class is Web. We have more
Streaming than P2P dominated users. This complies with the intuition that every user,
even if not experienced, can watch a YouTube video, whereas using a P2P application
requires installing a specific software (P2P client). The remaining dominant applica-
tions correspond to clients that generate a small amount of bytes most of the time. For
instance, users that have DB, Others, Control or Games as dominating application gen-
erate an overall number of bytes that is extremely low.

We present in Fig. 3 the users to application mapping for set B using the above
dominant application approach. We adopt a representation in which each user is char-
acterized by the total number of bytes she generates in the up and down direction and
label the corresponding point in a two dimensional space with the dominant application
of the user in terms of bytes. We restricted the figure to a list of 6 important applica-
tions: Web, Streaming, VOIP, Download and P2P. We further added the users having
majority of bytes in the Unknown class to assess their behavior.

Most important lesson of Fig. 2 is that labeling a client with her dominating ap-
plication is meaningful. Indeed, the dominating application in terms of bytes usually
generates the vast majority of users’ total volume. Customers with the same dominat-
ing applications are clustered together, and exhibit behavior typical for this application,
which we detail below.
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Table 4. Users dominating applications breakdown. Each user is labeled with his dominant ap-
plication in terms of bytes. (Only users that transfered at least 100B: 1755 users). Set B.

Class
Fraction Fraction of
of Users Bytes explained

UNKNOWN 21% 12%
WEB 35% 19%
P2P 4% 35%
DOWN 5% ≤ 1%
MAIL 1% ≤ 1%
DB 9% ≤ 1%
OTHERS 8% ≤ 1%
CONTROL 7% ≤ 1%
GAMES ≤ 1% ≤ 1%
STREAMING 7% 25%
CHAT 1% ≤ 1%
VOIP 1% 2%

We observe from Fig. 3 that:

– P2P heavy hitters tend to generate more symmetric traffic than Download and
Streaming heavy hitters, which are far below the bisector.

– Web users fall mostly in between the bisector and the heavy hitters from the Down-
load and Streaming classes. This is also in accordance with intuition as Web brows-
ing often requires data exchange from clients to servers, e.g., when using Web
search engines. This is in contrast to Streaming or Download where data flow
mainly from servers to clients.
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– Concerning Unknown users, we observe first that a significant fraction of them
generated almost no traffic as they lay in the bottom-left corner of the plot. As for
Unknown heavy hitters, we observe that they are closer on the figure to P2P heavy
users than to client-server heavy users. This might indicate that there exist some
P2P applications that fly below the radar of our DPI tool. We further investigate
this issue in the next section.

A last key remark is that the equivalent of Fig. 3 for set A is qualitatively very similar,
emphasizing the overall similarity of users activity in the two data sets (even if several
month apart and at a different time of day).

The above analysis has again underlined the crucial role of (per application) heavy
hitters. In the next section, we will focus on the top 10 heavy hitters in each trace.
Each of them generated at least 0.6 GB of data and up to 2.1 GB and, overall, they
are responsible for at least 1/4 of the bytes in each trace. We profile these users by
accounting simultaneously for all the applications they use.

4.2 Top Ten Heavy Hitters

In this section, we focus on the top 10 heavy hitters for sets A and B. Note that these are
distinct sets of users. It is a small, but very important group of customers from the ISP
perspective, and better understanding of this group (aggregating 1/4 of total volume)
might have significant impact on network provisioning and dimensioning. Fig. 4(a) and
4(b) show the fraction of bytes they have generated in the up (positive values) and down
direction (negative values) for each application. For sake of clarity, we put in the figure
only the labels of the significant applications for each user. We do observe from Fig. 4(a)
and 4(b) that heavy hitters, for the most part, use P2P applications. Streaming and (at
least for one user) download activities seem also to give birth to some heavy hitters.

We also observe that unknown traffic seems to be associated mostly with P2P users
(which is in line with Fig. 3). This is an important finding from the perspective of the
traffic classification, which often relies on per flow features. This user level information
could be used as a feature in the classifier. It is also in line with the findings in [12]
where it is shown that a significant fraction of bytes in the unknown category (we use
the same DPI tool but different traces) is generated by P2P applications. In the present
case, 67 % and 95 % of unknown bytes are generated by the users having in parallel
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peer-to-peer activity for set A and B respectively. The reason why some of the P2P
traffic might be missed by our DPI tool is out of the scope of the paper. We note that
there are at least two possible explanations: either we missed in our trace the beginning
of a long P2P transfer and the DPI tool might not have enough information2 to take a
decision, or these users run currently unknown P2P applications in parallel.

4.3 Users Application Mix

In the previous sections, we analyzed our users profile taking only bytes into account.
This approach is informative and makes sense from a dimensioning viewpoint. How-
ever as the per applications volumes are very different – e.g., P2P applications tend to
generate much more bytes than Web browsing – we miss some usage information with
this purely byte-based approach. In this section, we explore a different perspective. We
associate to each user a binary vector, which indicates her usage of each application.
We take advantage of clustering techniques to present typical application mixtures.

“Real” vs. “fake” usage. We represent each customer with a binary vector: A =
[appli1 · · · applin] where n is the number of applications we consider. Each applii ∈
{0, 1} is a indication weather the customer used application i or not. We define per ap-
plication heuristics to declare that a customer actually uses a class of application. To do
that, we define minimal thresholds for three metrics: bytes up, bytes down and number
of flows. Depending on the application any or all of the three thresholds need to be
matched. We summarize the heuristics in Tab. 5. The values were derived from the data
as it is exemplified in Fig. 5 for P2P and WEB traffic.
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Fig. 5. Example of how the threshold is selected. Set A.

Heuristics are necessary to separate real application usage from measurements ar-
tifacts (for instance misclassification due to not enough payload). For instance, large
fraction of users of the platform have a single flow which is declared by the DPI tool
as WEB browsing. It is hard to believe that this flow is a real web browsing activ-
ity, as current web sites tend to generate multiple connections for a single site (single
search without browsing on google.com shows up to 7 connections). Similar prob-
lems might occur with other applications, for instance peer-to-peer user that closed his
application, might still receive file requests for some time due to the way some P2P
overlays work.

2 Application level information are often at the onset of transfers [2].
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Table 5. Ad-hoc, per application and user minimum thresholds to declare application usage

Class
Volume Number

Policy
Down Up of Flows

WEB 300kB 500kB 20 All
P2P 1 MB 1 MB 10 Any
STREAMING 1 MB 1 MB – Any
DOWNLOAD 2 kB 1 kB – Any
MAIL 30kB 3 kB – All
GAMES 5 kB 5 kB – Any
VOIP 200kB 200kB – All
CHAT 10kB 10kB – Any

Choice of clustering. We have considered several popular clustering techniques to be
able to understand the application mix of each user, see [9] for a complete reference on
main clustering techniques. As explained in the previous paragraph, we have discretized
the user’s characteristics according to some heuristic threshold in order to keep only
“real” application usage.

We have first tried the popular k-means clustering algorithm, and observed that the
resulting clusters are difficult to match to applications. Moreover the choice of the num-
ber of clusters can dramatically change this representation.

Hierarchical clustering offers an easily interpretable technique for grouping similar
users. The approach is to take all the users as tree leaves, and group leaves according
to their application usage (binary values). We choose an agglomerative (or down-up)
method:

1. The two closest nodes3 in the tree are grouped together;
2. They are replaced by a new node by a process called linkage;
3. The new set of nodes is aggregated until there is only a single root for the tree.

With this clustering algorithm, the choices of metric and linkage have to be customized
for our purpose.

We want to create clusters of users that are relatively close considering the ap-
plications mix they use. Among comprehensive metrics for clustering categorical at-
tributes the Tanimoto distance [16] achieves these requirements. It is defined as follows:
d(x, y) = 1 − xt·y

xt·x+yt·y−xt·y .4 This means that users having higher number of com-
mon applications will be close to each other. For example, consider 3 users having the
following mix of applications5:

User Web Streaming Down P2P

A 1 1 0 0
B 1 1 1 0
C 1 1 0 1

3 At first occurrence, nodes are leaves.
4 xt stands for x transposed.
5 1 means application usage and 0 means no application usage.
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Fig. 6. Application clustering for top 50 most active users. Set A.

With Tanimoto distance, users B and C will be closer to each other because they have
same total number of applications even if all 3 users share same common applications.

We use a complete linkage clustering, where the distance between nodes (consisting
of one or several leaves) is the maximum distance among every pair of leaves of these
nodes. It is also called farthest neighbor linkage.

Due to the chosen metric, and as we chose not to prune the resulting tree, the hi-
erarchical clustering leads to as many clusters as there are applications combinations:∑n

i=1

(
n
i

)
. In our case, we restrict the set of applications we focus only to Web, Stream-

ing, P2P and Download.

Applications mix. We present in Fig. 6 and 7 the clustering results for the top 50
and second 50 most active users respectively. In total, the first one hundred users of
the platform are responsible for 80% of the volume. We first consider only the classes
generating most of the traffic, as described by Tab. 3 namely: Web, P2P, Streaming, and
Download.

Each barplot represents a single user and expresses his total volume share. Barplots
(thus users) are grouped into the sorted clusters. Each cluster, indicated by a different
color, groups the users that had the same applications. Thus close clusters in the graph
are similar with respect to their application mix.

Considering only four applications, we have 15 possible combinations. What we
observe is that some combinations are clearly more popular than others, while a few of
them never occurred in our data. We present below a more precise analysis that reveals
some insights about the typical users profiles.

Looking at the top 50 active users, we see that the P2P related clusters (P2P only,
P2P + Web, P2P + Web + Streaming) dominates the top heavy hitters with 28 users.
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Fig. 7. Application clustering for top 51-100 most active users. Set A.

These P2P related clusters aggregate 36% of the total volume of the trace. Pure Web +
Streaming profiles are the largest cluster in volume (18% of total), and have the biggest
heavy hitter of the trace (over 5% of the whole traffic).

The second set of 50 most active clients reveals a diffrent picture. Here, over 23
clients use only Web and Streaming, while the group of P2P users is much smaller.
In these users, the usual browsing activity is much present with Web related clusters
regrouping 2/3 of users.

It is interesting to see that P2P and Streaming users form very distinct groups as
only 10 of 100 most active users mix these 2 applications. This is also the case with
Download whose profile never overlaps P2P. This shows that there is a set of clients that
prefer classical P2P and another set of clients that use one click hosting to download
contents.

The clustering process indeed partitions the first 50 heavy hitters according to P2P
first, whereas for the second 50 heavy hitters the first partition occurs on Web.

Application mix - discussion. Focusing on the first heavy hitters we observe that this
family of users is dominated by P2P related heavy-hitters. Even if streaming activity
can also lead a user to become a heavy user, the main part of the volume generated by
this class comes from a majority of moderate streaming users.

We conjecture that this situation will persist as the popularity of streaming continues
to increase. Indeed, this increase of popularity is likely to translate into more users
streaming more videos rather than a few users streaming a lot. If the main content
providers switch to High Definition video encoding (which has bit-rates up to 4 times
larger than standard definition), this could have a dramatic impact for ISPs.
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5 Conclusion

In this paper, we have proposed and illustrated several simple techniques to profile
residential customers, with respect to their application level characteristics.

We have first presented an approach where the focus is on the dominant application
of a user, which is justified by the fact that the dominant application explains a large
majority of bytes for most users (in our data sets at least). This approach enables us
to observe overall trends among moderately heavy and heavy users in a platform. We
have next focused more deeply on the heavy hitters. Those heavy hitters are mostly P2P
users, even though the global trend of traffic shows that Web and Streaming classes
dominate. It is however understandable as P2P applications naturally tend to generate
a few heavy hitters, while Web and Streaming tend to increase the volume of traffic of
the average user.

We also devised an approach that seeks for common application mixes among the
most active users of the platform. To this aim, we defined per application thresholds
to differentiate real usage of an application from measurement artifacts. We use hier-
archical clustering, that groups customers into a limited number of usage profiles. By
focusing on the 100 most active users, divided in two equal sets, we demonstrated that:

– P2P users (pure P2P or mixed with other applications) are dominant in number and
volume among the first 50 most active users;

– whereas in the second set of 50 most active users, the killer application is the com-
bination of Web and Streaming.

Moreover while almost all P2P bytes are generated by the first 50 most active users,
the Web + Streaming class is used by many users, and generates a fraction of bytes
comparable (or higher) to P2P.

Our study sheds light on the traffic profile of the most active users in a residential
platform, which has many implications for ISPs. However, we have only scratched the
surface of the problem.Application at a larger scale of similar techniques, e.g., on much
longer traces, would bring more insights than the snapshots we analyzed. As part of our
future work, we plan to further extend the analysis, by tracking the evolution of users
profiles on the long term.

The techniques presented in this paper complement the standard monitoring tools
of the ISP platform and can help in predicting new trends in application usage. For
instance, it gives us the root cause of faster and faster growth of Web + Streaming
against P2P (usage democratization).

We strongly believe that hierarchical clustering on discretized attributes is a good
approach because it greatly eases interpretation of the resulting clusters. Still, we plan
to extend the discretization process from binary to (at least) ternary variables to take
into account low/medium usage of an application vs. high usage.
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Abstract. Network anomaly detection has been a hot research topic for
many years. Most detection systems proposed so far employ a supervised
strategy to accomplish the task, using either signature-based detection
methods or supervised-learning techniques. However, both approaches
present major limitations: the former fails to detect unknown anoma-
lies, the latter requires training and labeled traffic, which is difficult and
expensive to produce. Such limitations impose a serious bottleneck to
the development of novel and applicable methods in the near future net-
work scenario, characterized by emerging applications and new variants
of network attacks. This work introduces and evaluates an unsupervised
approach to detect and characterize network anomalies, without relying
on signatures, statistical training, or labeled traffic. Unsupervised de-
tection is accomplished by means of robust data-clustering techniques,
combining Sub-Space Clustering and multiple Evidence Accumulation
algorithms to blindly identify anomalous traffic flows. Unsupervised char-
acterization is achieved by exploring inter-flows structure from multiple
outlooks, building filtering rules to describe a detected anomaly. Detec-
tion and characterization performance of the unsupervised approach is
extensively evaluated with real traffic from two different data-sets: the
public MAWI traffic repository, and the METROSEC project data-set.
Obtained results show the viability of unsupervised network anomaly
detection and characterization, an ambitious goal so far unmet.

Keywords: Unsupervised Anomaly Detection & Characterization, Clus-
tering, Clusters Isolation, Outliers Detection, Filtering Rules.

1 Introduction

Network anomaly detection has become a vital component of any network in
today’s Internet. Ranging from non-malicious unexpected events such as flash-
crowds and failures, to network attacks such as denials-of-service and worms
spreading, network traffic anomalies can have serious detrimental effects on the
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performance and integrity of the network. The principal challenge in automat-
ically detecting and characterizing traffic anomalies is that these are a moving
target. It is difficult to precisely and permanently define the set of possible
anomalies that may arise, especially in the case of network attacks, because
new attacks as well a new variants to already known attacks are continuously
emerging. A general anomaly detection system should therefore be able to de-
tect a wide range of anomalies with diverse structure, using the least amount of
previous knowledge and information, ideally no information at all.

The problem of network anomaly detection has been extensively studied dur-
ing the last decade. Two different approaches are by far dominant in current
research literature and commercial detection systems: signature-based detection
and supervised-learning-based detection. Both approaches require some kind of
guidance to work, hence they are generally referred to as supervised-detection
approaches. Signature-based detection systems are highly effective to detect
those anomalies which they are programmed to alert on. However, these systems
cannot defend the network against new attacks, simply because they cannot
recognize what they do not know. Furthermore, building new signatures is ex-
pensive, as it involves manual inspection by human experts. On the other hand,
supervised-learning-based detection uses labeled traffic data to train a baseline
model for normal-operation traffic, detecting anomalies as patterns that deviate
from this model. Such methods can detect new kinds of anomalies and network
attacks not seen before, because these will naturally deviate from the baseline.
Nevertheless, supervised-learning requires training, which is time-consuming and
depends on the availability of labeled traffic data-sets.

Apart from detection, operators need to analyze and characterize network
anomalies to take accurate countermeasures. The characterization of an anomaly
is a hard and time-consuming task. The analysis may become a particular bot-
tleneck when new anomalies are detected, because the network operator has to
manually dig into many traffic descriptors to understand its nature. Even expert
operators can be quickly overwhelmed if further information is not provided to
prioritize the time spent in the analysis.

Contrary to current supervised approaches, we develop in this work a com-
pletely unsupervised method to detect and characterize network anomalies, with-
out relying on signatures, training, or labeled traffic of any kind. The proposed
approach permits to detect both well-known as well as completely unknown
anomalies, and to automatically produce easy-to-interpret signatures that char-
acterize them. The algorithm runs in three consecutive stages. Firstly, traffic
is captured in consecutive time slots of fixed length ΔT and aggregated in IP
flows (standard 5-tuples). IP flows are additionally aggregated at different flow-
resolution levels, using {IPaddress/netmask} as aggregation key. Aggregation is
done either for IPsrc or IPdst. To detect an anomalous time slot, time-series Zt

are constructed for simple traffic metrics such as number of bytes, packets, and
IP flows per time slot, using the different flow-resolutions. Any generic change-
detection algorithm F(.) based on time-series analysis [1–5] is then applied to
Zt: at each new time slot, F(.) analyses the different time-series associated with
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each aggregation level, going from coarser to finer-grained resolution. Time slot
t0 is flagged as anomalous if F(Zt0) triggers an alarm for any of the traffic
metrics at any flow-resolution. Tracking anomalies from multiple metrics and at
multiple aggregation levels (i.e. /8, /16, /24, /32 netmask) provides additional
reliability to the change-detection algorithm, and permits to detect both single
source-destination and distributed anomalies of very different characteristics.

The unsupervised detection and characterization algorithm begins in the sec-
ond stage, using as input the set of flows in the flagged time slot. Our method
uses robust and efficient clustering techniques based on Sub-Space Clustering
(SSC) [8] and multiple Evidence Accumulation (EA) [9] to blindly extract the
suspicious traffic flows that compose the anomaly. As we shall see, the simul-
taneous use of SSC and EA improves the power of discrimination to properly
detect traffic anomalies. In the third stage of the algorithm, the evidence of
traffic structure provided by the SSC and EA algorithms is further used to pro-
duce filtering rules that characterize the detected anomaly, which are ultimately
combined into a new anomaly signature. This signature provides a simple and
easy-to-interpret description of the problem, easing network operator tasks.

The remainder of the paper is organized as follows. Section 2 presents a very
brief state of the art in the supervised and unsupervised anomaly detection
fields, additionally describing our main contributions. Section 3 introduces the
core of the proposal, presenting an in-depth description of the clustering tech-
niques and detection algorithms that we use. Section 4 presents the automatic
anomaly characterization algorithm, which builds easy-to-interpret signatures for
the detected anomalies. Section 5 presents an exhaustive validation of our pro-
posals, discovering and characterizing single source/destination and distributed
network attacks in real network traffic from two different data-sets: the public
MAWI traffic repository of the WIDE project [17], and the METROSEC project
data-set [18]. Finally, section 6 concludes this paper.

2 Related Work and Contributions

The problem of network anomaly detection has been extensively studied during
the last decade. Traditional approaches analyze statistical variations of traffic
volume metrics (e.g., number of bytes, packets, or flows) and/or other spe-
cific traffic features (e.g. distribution of IP addresses and ports), using either
single-link measurements or network-wide data. A non-exhaustive list of methods
includes the use of signal processing techniques (e.g., ARIMA, wavelets) on
single-link traffic measurements [1, 2], PCA [7] and Kalman filters [4] for network-
wide anomaly detection, and Sketches applied to IP-flows [3, 6].

Our proposal falls within the unsupervised anomaly detection domain. Most
work has been devoted to the Intrusion Detection field, focused on the well known
KDD’99 data-set. The vast majority of the unsupervised detection schemes pro-
posed in the literature are based on clustering and outliers detection, being
[11–13] some relevant examples. In [11], authors use a single-linkage hierar-
chical clustering method to cluster data from the KDD’99 data-set, based on
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the standard Euclidean distance for inter-pattern similarity. Clusters are con-
sidered as normal-operation activity, and patterns lying outside a cluster are
flagged as anomalies. Based on the same ideas, [12] reports improved results in
the same data-set, using three different clustering algorithms: Fixed-Width clus-
tering, an optimized version of k-NN, and one class SVM. Finally, [13] presents
a combined density-grid-based clustering algorithm to improve computational
complexity, obtaining similar detection results.

Our unsupervised algorithm presents several advantages w.r.t. current state of
the art. First and most important, it works in a completely unsupervised fashion,
which means that it can be directly plugged-in to any monitoring system and
start to detect anomalies from scratch, without any kind of calibration. Secondly,
it performs anomaly detection based not only on outliers detection, but also by
identifying small-size clusters. This is achieved by exploring different levels of
traffic aggregation, both at the source and destination of the traffic, which ad-
ditionally permits to discover low-intensity and distributed attacks. Thirdly, it
avoids the lack of robustness of general clustering techniques used in current un-
supervised anomaly detection algorithms; in particular, it is immune to general
clustering problems such as sensitivity to initialization, specification of number
of clusters, or structure-masking by irrelevant features. Fourthly, the algorithm
performs clustering in low-dimensional spaces, using simple traffic descriptors
such as number of source IP addresses or fraction of SYN packets. This sim-
plifies the analysis and characterization of the detected anomalies, and avoids
well-known problems of sparse spaces when working with high-dimensional data.
Finally, the method combines the multiple evidence of an anomaly detected in
different sub-spaces to produce an easy-to-interpret traffic signature that char-
acterizes the problem. This permits to reduce the time spent by the network
operator to understand the nature of the detected anomaly.

3 Unsupervised Anomaly Detection

The unsupervised anomaly detection stage takes as input all the flows in the time
slot flagged as anomalous, aggregated according to one of the different levels used
in the first stage. An anomaly will generally be detected in different aggregation
levels, and there are many ways to select a particular aggregation to use in the
unsupervised stage; for the sake of simplicity, we shall skip this issue, and use
any of the aggregation levels in which the anomaly was detected. Without loss
of generality, let Y = {y1, ..,yn} be the set of n flows in the flagged time slot,
referred to as patterns in more general terms. Each flow yi ∈ Y is described by
a set of m traffic attributes or features. Let xi = (xi(1), .., xi(m)) ∈ R

m be the
corresponding vector of traffic features describing flow yi, and X = {x1, ..,xn}
the complete matrix of features, referred to as the feature space.

The algorithm is based on clustering techniques applied to X. The objective
of clustering is to partition a set of unlabeled patterns into homogeneous groups
of similar characteristics, based on some measure of similarity. Our particular
goal is to identify and to isolate the different flows that compose the anomaly
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flagged in the first stage. Unfortunately, even if hundreds of clustering algorithms
exist [10], it is very difficult to find a single one that can handle all types of cluster
shapes and sizes. Different clustering algorithms produce different partitions of
data, and even the same clustering algorithm provides different results when
using different initializations and/or different algorithm parameters. This is in
fact one of the major drawbacks in current cluster analysis techniques: the lack
of robustness.

To avoid such a limitation, we have developed a divide & conquer clustering
approach, using the notions of clustering ensemble [15] and multiple clusterings
combination. The idea is novel and appealing: why not taking advantage of the
information provided by multiple partitions of X to improve clustering robust-
ness and detection results? A clustering ensemble P consists of a set of multiple
partitions Pi produced for the same data. Each of these partitions provides a
different and independent evidence of data structure, which can be combined
to construct a new measure of similarity that better reflects natural groupings.
There are different ways to produce a clustering ensemble. We use Sub-Space
Clustering (SSC) [8] to produce multiple data partitions, applying the same
clustering algorithm to N different sub-spaces Xi ⊂ X of the original space.

3.1 Clustering Ensemble and Sub-Space Clustering

Each of the N sub-spaces Xi ⊂ X is obtained by selecting k features from the
complete set of m attributes. To deeply explore the complete feature space, the
number of sub-spaces N that are analyzed corresponds to the number of k-
combinations-obtained-from-m. Each partition Pi is obtained by applying DB-
SCAN [16] to sub-space Xi. DBSCAN is a powerful density-based clustering
algorithm that discovers clusters of arbitrary shapes and sizes [10], and it is
probably one of the most common clustering algorithms along with the widely
known k-means. DBSCAN perfectly fits our unsupervised traffic analysis, be-
cause it is not necessary to specify a-priori difficult to set parameters such as
the number of clusters to identify. The clustering result provided by DBSCAN is
twofold: a set of p clusters {C1, C2, .., Cp} and a set of q outliers {o1, o2, .., oq}. To
set the number of dimensions k of each sub-space, we take a very useful property
of monotonicity in clustering sets, known as the downward closure property: “if
a collection of points is a cluster in a k-dimensional space, then it is also part
of a cluster in any (k − 1) projections of this space”. This directly implies that,
if there exists any evidence of density in X, it will certainly be present in its
lowest-dimensional sub-spaces. Using small values for k provides several advan-
tages: firstly, doing clustering in low-dimensional spaces is more efficient and
faster than clustering in bigger dimensions. Secondly, density-based clustering
algorithms such as DBSCAN provide better results in low-dimensional spaces
[10], because high-dimensional spaces are usually sparse, making it difficult to
distinguish between high and low density regions. Finally, results provided by
low-dimensional clustering are more easy to visualize, which improves the inter-
pretation of results by the network operator. We shall therefore use k = 2 in our
SSC algorithm, which gives N = m(m− 1)/2 partitions.
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3.2 Combining Multiple Partitions Using Evidence Accumulation

Having produced the N partitions, the question now is how to use the in-
formation provided by the obtained clusters and outliers to isolate anoma-
lies from normal-operation traffic. An interesting answer is provided in [9],
where authors introduced the idea of multiple-clusterings Evidence Accumu-
lation (EA). EA uses the clustering results of multiple partitions Pi to produce
a new inter-patterns similarity measure which better reflects natural groupings.
The algorithm follows a split-combine-merge approach to discover the underlying
structure of data. In the split step, the N partitions Pi are generated, which
in our case they correspond to the SSC results. In the combine step, a new
measure of similarity between patterns is produced, using a weighting mecha-
nism to combine the multiple clustering results. The underlying assumption in
EA is that patterns belonging to a “natural” cluster are likely to be co-located
in the same cluster in different partitions. Taking the membership of pairs of
patterns to the same cluster as weights for their association, the N partitions
are mapped into a n × n similarity matrix S, such that S(i, j) = nij/N . The
value nij corresponds to the number of times that pair {xi,xj} was assigned to
the same cluster in the N partitions. Note that if a pair of patterns {xi,xj} is
assigned to the same cluster in each of the N partitions then S(i, j) = 1, which
corresponds to maximum similarity.

We adapt the EA algorithm for our particular problem of unsupervised anomaly
detection. For doing so, let us think about the particular structure of any general
anomaly. By simple definition of what it is, an anomaly may consist of either
outliers or small-size clusters, depending on the aggregation level of flows in Y.
Let us take a flooding attack as an example; in the case of a DoS, all the packets
of the attack will be aggregated into a single flow yi targeting the victim, which
will be represented as an outlier in X. If we now consider a DDoS launched from
β attackers towards a single victim, then the anomaly will be represented as a
cluster of β flows if the aggregation is done for IPsrc/32, or as an outlier if the
aggregation is done for IPdst/32. Taking into account that the number of flows
in Y can reach a couple of thousands even for small time slots, the value of β
would have to be too large to violate the assumption of small-size cluster.

We have developed two different EA methods to isolate small-size clusters
and outliers: EA for small-clusters identification, EA4C, and EA for outliers
identification, EA4O. Algorithm 1 presents the pseudo-code for both methods.
In EA4C, we assign a stronger similarity weight when patterns are assigned to
small-size clusters. The weighting function wk(nt(k)) used to update S(i, j) at
each iteration t takes bigger values for small values of nt(k), and goes to zero for
big values of nt(k), being nt(k) the number of flows inside the co-assigned cluster
for pair {xi,xj}. Parameters nmin and ρ specify the minimum number of flows
that can be classified as a cluster and the neighborhood-density distance used by
DBSCAN respectively. The parameter γ permits to set the slope of wk(nt(k)).
Even tunable, we shall work with fixed values for nmin, ρ, and γ, nmin = 20,
ρ = 0.1, and γ = 5, all empirically obtained.
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Algorithm 1. EA4C & EA4O for Unsupervised Anomaly Detection
1: Initialization:
2: Set similarity matrix S to a null n× n matrix.
3: Set dissimilarity vector D to a null n× 1 vector.
4: for t = 1 : N do
5: Pt = DBSCAN (Xt, nmin,ρ)

6: Update S(i, j), ∀ pair {xi,xj} ∈ Ck and ∀Ck ∈ Pt:

7: wk ← e
−γ

(nt(k)− nmin)
n

8: S(i, j)← S(i, j) + wk
N

9: Update D(i), ∀ outlier oi ∈ Pt:

10: wt ← n
(n− nmaxt) + ε

11: D(i)← D(i) + dM(oi, Cmaxt) wt

12: end for

In the case of EA4O, we define a dissimilarity vector D where the distances
from all the different outliers to the centroid of the biggest cluster identified in
each partition Pt are accumulated. We shall use Cmaxt

as a reference to this clus-
ter. The idea is to clearly highlight those outliers that are far from the normal-
operation traffic in the different partitions, statistically represented by Cmaxt .
The weighting factor wt takes bigger values when the size nmaxt

of Cmaxt
is closer

to the total number of patterns n, meaning that outliers are more rare and be-
come more important as a consequence. The parameter ε is simply introduced
to avoid numerical errors (ε = 1e−3). Finally, instead of using a simple Eu-
clidean distance, we compute the Mahalanobis distance dM(oi, Cmaxt

) between
the outlier and the centroid of Cmaxt

, which is an independent-of-features-scaling
measure of similarity.

In the final merge step, any clustering algorithm can be applied to matrix S or
to vector D to obtain a final partition of X that isolates both small-size clusters
and outliers. As we are only interested in finding the smallest-size clusters and
the most dissimilar outliers, the detection consists in finding the flows with the
biggest similarity in S and the biggest dissimilarity in D. This is simply achieved
by comparing the values in S and D to a variable detection threshold.

4 Automatic Characterization of Anomalies

At this stage, the algorithm has identified a set of traffic flows in Y far out the
majority of the traffic. The following task is to automatically produce a set of
K filtering rules fk(Y), k = 1, .., K to correctly isolate and characterize these
flows. In the one hand, such filtering rules provide useful insights on the nature
of the anomaly, easing the analysis task of the network operator. On the other
hand, different rules can be combined to construct a signature of the anomaly,
which can be used to detect its occurrence in the future, using a traditional
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signature-based detection system. Even more, this signature could eventually be
compared against well-known signatures to automatically classify the anomaly.

In order to produce filtering rules fk(Y), the algorithm selects those sub-
spaces Xi where the separation between the anomalous flows and the rest of the
traffic is the biggest. We define two different classes of filtering rule: absolute
rules fA(Y) and relative rules fR(Y). Absolute rules are only used in the char-
acterization of small-size clusters. These rules do not depend on the separation
between flows, and correspond to the presence of dominant features in the flows
of the anomalous cluster. An absolute rule for a certain feature j has the form
fA(Y) = {yi ∈ Y : xi(j) == λ}. For example, in the case of an ICMP flooding
attack, the vast majority of the associated flows use only ICMP packets, hence
the absolute filtering rule {nICMP/nPkts == 1} makes sense.

On the contrary, relative filtering rules depend on the relative separation
between anomalous and normal-operation flows. Basically, if the anomalous flows
are well separated from the rest of the clusters in a certain partition Pi, then
the features of the corresponding sub-space Xi are good candidates to define a
relative filtering rule. A relative rule defined for feature j has the form fR(Y) =
{yi ∈ Y : xi(j) < λ or xi(j) > λ}. We shall also define a covering relation
between filtering rules: we say that rule f1 covers rule f2 ↔ f2(Y) ⊂ f1(Y).
If two or more rules overlap (i.e., they are associated to the same feature), the
algorithm keeps the one that covers the rest.

In order to construct a compact signature of the anomaly, we have to devise a
procedure to select the most discriminant filtering rules. Absolute rules are im-
portant, because they define inherent characteristics of the anomaly. As regards
relatives rules, their relevance is directly tied to the degree of separation between
flows. In the case of outliers, we select the K features for which the Mahalanobis
distance to the normal-operation traffic is among the top-K biggest distances. In
the case of small-size clusters, we rank the degree of separation to the rest of the
clusters using the well-known Fisher Score (FS), and select the top-K ranked
rules. The FS measures the separation between clusters, relative to the total
variance within each cluster. Given two clusters C1 and C2, the Fisher Score for
feature i can be computed as:

F (i) =
(x̄1(i)− x̄2(i))

2

σ1(i)2 + σ2(i)2

where x̄j(i) and σj(i)2 are the mean and variance of feature i in cluster Cj . In
order to select the top-K relative rules, we take the K features i with biggest
F (i) value. To finally construct the signature, the absolute rules and the top-K
relative rules are combined into a single inclusive predicate, using the covering
relation in case of overlapping rules.

5 Experimental Evaluation in Real Traffic

We evaluate the ability of the unsupervised algorithm to detect and to construct
a signature for different attacks in real traffic from the public MAWI repository of
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the WIDE project [17]. The WIDE operational network provides interconnection
between different research institutions in Japan, as well as connection to different
commercial ISPs and universities in the U.S.. The traces we shall work with
consist of 15 minutes-long raw packet traces collected at one of the trans-pacific
links between Japan and the U.S.. Traces are not labeled, thus our analysis is
limited to show the detection and characterization of different network attacks
found by manual inspection in randomly selected traces, such as ICMP DoSs,
SYN network scans, and SYN DDoS. Whenever possible, we refer to results
obtained in [6], where some of these attacks have already been identified.

We shall also test the true positive and false positive rates obtained with
annotated attacks, using different traffic traces from the METROSEC project
[18]. These traces consist of real traffic collected on the French RENATER net-
work, containing simulated attacks performed with well-known DDoS attack
tools. Traces were collected between 2004 and 2006, and contain DDoS attacks
that range from very low intensity (i.e., less than 4% of the overall traffic vol-
ume) to massive attacks (i.e., more than 80% of the overall traffic volume).
Additionally, we shall compare the performance of the algorithm against some
traditional methods for unsupervised outliers detection presented in section 2,
and also against the very well-known PCA and the sub-space approach [7].

In these evaluations we use the following list of m = 9 traffic features:
number of source/destination IP addresses and ports (nSrcs, nDsts, nSrcPorts,
nDstPorts), ratio of number of sources to number of destinations, packet rate
(nPkts/sec), fraction of ICMP and SYN packets (nICMP/nPkts, nSYN/nPkts),
and ratio of packets to number of destinations. According to previous work on
signature-based anomaly characterization [14], such simple traffic descriptors
permit to describe standard attacks such as DDoS, scans, and spreading worms.
The list is by no means exhaustive, and more features can be easily plugged-in
to improve results. In fact, a paramount advantage of our approach is that it
is not tied to any particular set of features, and can therefore be generalized to
any kind of traffic descriptors. For m = 9 features, we get N = 36 sub-spaces to
analyze, a pretty small clustering ensemble that can be computed very fast.

5.1 Detecting Attacks in the Wild: MAWI Traffic

We begin by detecting and characterizing a distributed SYN network scan di-
rected to many victim hosts under the same /16 destination network. The trace
consists of traffic captured the 01/04/01. Traffic in Y is aggregated in IPdst/24
flows, thus we shall detect the attack as a small-size cluster. To appreciate the
great advantage of using the SSC-EA-based algorithm w.r.t. a traditional ap-
proach, based on directly clustering the complete feature space, we shall com-
pute a “traditional” similarity matrix Stra for the n flows in Y. Each element
Stra(i, j) represents inter-flows similarity by means of the Euclidean distance.
Figures 1.(a,b) depict the discrimination provided by both similarity matrices
S and Stra, using a Multi-Dimensional Scaling (MDS) analysis. The anomalous
flows are mixed-up with the normal ones w.r.t. Stra, and the discrimination using
all the features at the same time becomes difficult. In the case of S, the flows
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Fig. 1. MDS for traditional and SSC-EA-based clustering. A SYN network scan can
be easily detected using the SSC-EA similarity measure.

that compose the attack are perfectly isolated from the rest, providing a power-
ful discrimination. As we explained before, the detection of the attack consists in
identifying the most similar flows in S. Figure 1.(c) depicts a histogram on the
distribution of inter-flows similarity, according to S. Selecting the most similar
flows results in a compact cluster of 53 flows. A further analysis of the traffic
that compose each of these flows reveals different IPdst/32 sub-flows of SYN
packets with the same origin IP address, corresponding to the attacker.

Regarding filtering rules and the characterization of the attack, figures 2.(a,b)
depict some of the partitions Pi where both absolute and relative filtering rules
where found, corresponding to those with biggest Fisher Score. These rules in-
volve the number of IP sources and destinations, and the fraction of SYN packets.
Combining them produces a signature that can be expressed as (nSrcs == 1) ∧
(nDsts > λ1) ∧ (nSYN/nPkts > λ2), where λ1 and λ2 are two thresholds ob-
tained by separating the clusters at half distance. This signature makes perfect
sense, since the network scan uses SYN packets from a single attacking host to a
large number victims. The signature permits to correctly identify all the flows of
the attack. The beauty and main advantage of the unsupervised approach relies
on the fact that this new signature has been produced without any previous
information about the attack or the baseline traffic.

The next two case-studies correspond to flooding attacks. For practical is-
sues, traffic corresponds to different combined traces (14/10/03, 13/04/04, and
23/05/06). Figures 2.(c,d) depict different rules obtained in the detection of a
SYN DDoS attack. Traffic is now aggregated in IPsrc/32 flows. The distribu-
tion analysis of inter-flows similarity w.r.t. S selects a compact cluster with the
most similar flows, corresponding to traffic from the set of attacking hosts. The
obtained signature can be expressed as (nDsts == 1) ∧ (nSYN/nPkts > λ3) ∧
(nPkts/sec > λ4), which combined with the large number of identified sources
(nSrcs > λ5) confirms the nature of a SYN DDoS attack. This signature is able
to correctly isolate the most aggressive hosts of the DDoS attack, namely those
with highest packet rate. Figures 2.(e,f) depict the detection of an ICMP flood-
ing DoS attack. Traffic is aggregated using aggregation index IPdst/32, thus the
attack is detected as an outlier rather than as a small cluster. Besides showing



Unsupervised Network Anomaly Detection 25

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nDsts

nS
Y

N
/n

P
kt

s

 

 

Cluster 1
Cluster 2
Cluster 3
Anomalous flows
Outliers

relative filtering rule

                     absolute filtering rule

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nSrcs

nS
Y

N
/n

P
kt

s

 

 

Cluster 1
Cluster 2
Anomalous flows
Outliers

absolute filtering rule

relative filtering rule

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nDsts

nS
Y

N
/n

P
kt

s

 

 
Cluster 1
Cluster 2
Anomalous Flows
Outliers

relative filtering rule

absolute filtering rule

(a) SYN Network Scan (1/2) (b) SYN Network Scan (2/2) (c) SYN DDoS (1/2)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

nSYN/nPkts

nP
kt

s/
se

c

 

 

Cluster 1
Cluster 2
Cluster 3
Anomalous Flows
Outliers

relative filtering rules

absolute rule

relative filtering rule

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

nICMP/nPkts

nP
kt

s/
se

c

 

 

Cluster 1
Anomalous Flow
Outliers

relative filtering rule

0 50 100 150 200 250 300
0

50

100

150

200

250

nSrcs

nP
kt

s/
se

c

 

 

Cluster 1
Anomalous Flow
Outliers

(d) SYN DDoS (2/2) (e) ICMP Echo DoS (1/2) (f) ICMP Echo DoS (2/2)

Fig. 2. Filtering rules for characterization of attacks in MAWI

typical characteristics of this attack, such as a high packet rate of exclusively
ICMP packets from the same source host, both partitions show that the de-
tected attack does not represent the largest elephant flow in the time slot. This
emphasizes the ability of the algorithm to detect low volume attacks, even of
lower intensity than normal traffic. The obtained signature can be expressed as
(nICMP/nPkts > λ6) ∧ (nPkts/sec > λ7).

To conclude, we present the detection of two different attacks in one of the
traces previously analyzed in [6], captured the 18/03/03. Traffic is aggregated
in IPsrc/32 flows, and both attacks are detected as outliers. Figure 3.(a) shows
the ordered dissimilarity values in D obtained by the EA4O method, along with
their corresponding label. The first two most distant flows correspond to a highly
distributed SYN network scan (more than 500 destination hosts) and an ICMP
spoofed flooding attack directed to a small number of victims (ICMP redirect
packets towards port 0). The following two flows correspond to unusual large
rates of DNS traffic and HTTP requests; from there on, flows correspond to
normal-operation traffic. The ICMP flooding attack and the two unusual flows
are also detected in [6], but the SYN scan was missed by their method. Note
that both attacks can be easily detected and isolated from the anomalous but
yet legitimate traffic without false alarms, using for example the threshold α1 on
D. Figures 3.(b,c) depict the corresponding four flows in two of the N partitions
produced by EA4O. As before, we verify the ability of the algorithm to detect
network attacks that are not necessary the biggest elephant flows.

5.2 Detecting Attacks with Ground Truth: METROSEC Traffic

Figure 4 depicts the True Positives Rate (TPR) vs. the False Positives Rates
(FTR) in the detection of 9 DDoS attacks in the METROSEC data-set.
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Fig. 3. Detection and analysis of network attacks in MAWI

Detection is performed with traffic aggregated at the IPdst/32 level. Traffic corre-
sponds to different combined traces (24/11/04, 07-09-10/12/04, and 11/04/06).
The ROC plot is obtained by comparing the sorted dissimilarities in D to a
variable detection threshold. From the 9 documented attacks, 5 correspond to
massive attacks (more than 70% of traffic), 1 to a high intensity attack (about
40%), 2 are low intensity attacks (about 10%), and 1 is a very-low intensity
attack (about 4%). EA4O correctly detects 8 out of the 9 attacks without false
alarms. The detection of the very-low intensity attack is more difficult; however,
the 9 attacks are correctly detected with a very low FPR, about 1.2%.

We compare the performance of our approach against three “traditional” ap-
proaches: DBSCAN-based, k-means-based, and PCA-based outliers detection.
The first two consist in applying either DBSCAN or k-means to the complete
feature space X, identify the largest cluster Cmax, and compute the Mahalanobis
distance of all the flows lying outside Cmax to its centroid. The ROC is finally
obtained by comparing the sorted distances to a variable detection threshold.
These approaches are similar to those used in previous work [11–13]. In the PCA-
based approach, PCA and the sub-space methods [7] are applied to the complete
matrix X, and the attacks are detected by comparing the residuals to a variable
threshold. Both the k-means and the PCA-based approaches require fine tun-
ing: in k-means, we repeat the clustering for different values of clusters k, and
take the average results. In the case of PCA we present the best performance,
obtained for 2 principal components to describe the normal sub-space.
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Fig. 4. DDoS detection in METROSEC. EA4O detects even low intensity attacks with
a very-low false alarm rate, which is not achieved by traditional approaches.

Obtained results permit to evidence the great advantage of using the SSC-
EA-based algorithm in the clustering step w.r.t. to traditional approaches. In
particular, all the approaches used in the comparison fail to detect the smallest
attack with a reasonable false alarm rate. Both clustering algorithms based either
on DBSCAN or k-means get confused by masking features when analyzing the
complete feature space X. The PCA approach shows to be not sensitive enough
to discriminate both low-intensity and high-intensity attacks, using the same
representation for normal traffic.

6 Concluding Remarks

The completely unsupervised anomaly detection algorithm that we have pre-
sented has many interesting advantages w.r.t. previous proposals in the field. It
uses exclusively unlabeled data to detect and characterize network anomalies,
without assuming any kind of signature, particular model, or canonical data
distribution. This allows to detect new previously unseen anomalies, even with-
out using statistical-learning. Despite using ordinary clustering techniques, the
algorithm avoids the lack of robustness of general clustering approaches, by com-
bining the notions of Sub-Space Clustering and multiple Evidence Accumulation.
The Sub-Space Clustering approach also permits to obtain easy-to-interpret re-
sults, providing insights and explanations about the detected anomalies to the
network operator. Even more, clustering in low-dimensional feature spaces pro-
vides results that can be visualized by standard techniques, which improves the
assimilation of results.

We have verified the effectiveness of our proposal to detect and isolate real
single source/destination and distributed network attacks in real traffic traces
from different networks, all in a completely blind fashion, without assuming
any particular traffic model, significant clustering parameters, or even clusters
structure beyond a basic definition of what an anomaly is. Additionally, we
have shown detection results that outperform traditional approaches for outliers
detection, providing a stronger evidence of the accuracy of the SSC-EA-based
method to detect network anomalies.
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Abstract. This paper reports on the longitudinal dynamics of TCP
flows at an international backbone link over the period from 2001 to 2010.
The dataset was a collection of traffic traces called MAWI data consisting
of daily 15min pcap traffic trace measured at a trans-pacific link between
Japan and the US. The environment of the measurement link has changed
in several aspects (i.e., congestion, link upgrade, application). The main
findings of the paper are as follows. (1) A comparison of the AS-level
delays between 2001 and 2010 shows that the mean delay decreased in
55% of ASes, but the median value increased. Moreover, largely inefficient
paths disappeared. (2) The deployment of TCP SACK increased from
10% to 90% over the course of 10 years. On the other hand, the window
scale and timestamp options remained under-deployed (less than 50%).

1 Introduction

The Internet is one of the most important infrastructures in our daily life, and
a better understanding of its status will be crucial for ISPs and end-users. ISPs
need traffic characteristics for conducting daily operations and making decisions
about the future deployments. End-users are sometimes annoyed with their low
throughput or large delay. The stability of the network is affected by many issues;
changes made to the access/backbone links, evolution of applications, changes
in wide-area routing, etc. In general, it is hard to predict the future behavior of
a network, so an investigation of the network traffic for a long period would be
useful for gaining a better understanding of the network behavior.

Numerous studies have been conducted on many aspects of the network
[7,12,2,6,4,8]. In this paper, we analyze longitudinal TCP traffic dynamics by
using passive measurement data collected at a trans-pacific transit link between
Japan and the US during the period from 2001 to 2010. In early part of the
period, excessive traffic caused congestion on the link, but then the link upgrade
in 2006 mitigated it. Also, a wide variety of the application protocols were ob-
served. We believe that longitudinal traffic traces are enough for investigating
the characteristics of the network dynamics. In this paper we especially focus on
the time evolution of the delay, connection status, and usage of TCP options.

The main findings of the paper are as follows; (1) 60% of the established
TCP connections were correctly closed, though 20% of the web connections were
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terminated with reset with FIN flags. The same was observed in higher port
traffic (i.e., p2p), however, its ratio decreased rapidly over time. (2) The delay
between ASes was strongly affected by congestion on the link as expected. A
comparison of the AS-level delays between 2001 and 2010 shows that the mean
delay decreased in 55% of the ASes, but the median increased over the same
period. Furthermore, we found that largely inefficient paths have disappeared.
(3) The deployment of TCP SACK increased from 10% to 90% over 10 years.
On the other hand, the window scale and timestamp options are still under the
deployment (less than 50%).

2 Related Work

Passive and active measurements of network traffic have been widely used in or-
der to clarify the many aspects of the network (i.e., delay, jitter, loss, throughput,
available bandwidth, etc.).

For passive TCP-based measurements, there are many studies devoted to
accurately estimate the RTT in three-way-hand shake phase or slow-start phase
[10,9]. In terms of the connection status of TCP it has been shown that some web
server and client pairs finish their connection with FIN and RST packets instead
of normal termination with 2 FINs [3]. Similar observations have been reported
in the behavior of certain P2P software [11]. Furthermore, Refs. [13,5,11] focused
on the deployment of TCP options.

There have been a few studies focusing on the time evolution of traffic dynam-
ics. Ref. [7] reported basic statistics of several backbone network traffic traces
from 1998-2003. Furthermore, other studies have investigated time evolution of
specific traffic type; anomalies [2,8], P2P [12,1], and self-similarity [4].

3 Dataset

The data set we analyzed was composed of MAWI traces, which are daily 15
min pcap traces (14:00-14:15) collected at a transit link including a trans-pacific
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link between Japan and the US during 2001-2010 with tcpdump command. Each
trace consisted of pcap format packets without payload. We used seven consecu-
tive original traces on the 1st week of March during 2001-2010. We believed that
the data would be enough for understanding in the longitudinal behavior of In-
ternet traffic, because certain aspects of the network traffic in MAWI traffic have
been already analyzed, including anomalies [6,8] and long-range dependency [4].
The most dominant application in the traces is web throughout, and also clear
and hidden P2P traffic is non-negligible. The application traffic breakdown is
shown in MAWI web page (http://mawi.wide.ad.jp/mawi) and Ref. [6].

Figure 1 shows the average traffic of the link (a) from JP to US, and (b) from
US to JP as identified by the MAC address of the packets in the traces. The error
bars in the figure indicate the standard deviations of the traffic calculated from a
time series of the traffic volume in 1s time bins. The link bandwidth was originally
18Mbps CAR, but then was upgraded to 100Mbps in July 2006. As pointed out
in [4], the link was highly congested before the upgrade, showing small standard
deviations. On the other hand, the traffic volume after the upgrade indicates
high variability (large standard deviation). The ratio of corrpt packets at the
link was high up to 1.2% of the packets during congested periods (2003-2006),
but largely decreased (≈ 0.0001%) after the upgrade.

4 Analysis of Longitudinal Traffic

4.1 Status of Connections

We shall first examine the connection status of TCP over time. TCP establishes
a connection with 2 SYN packets (three-way hand shake; 3whs) and closes the
connection with 2 FIN packets. Tracking TCP flags enables us to categorize
the connection behavior into typical patterns. Figure 2 displays the number of
established and non-established TCP connections. An established connection is
defined as the connection with 2 SYN packets, and a non-established connection
fails to establish the connection in the 3whs phase. The number of established
connections increased from 138K in 2001 to 1M in 2010. A large number of
non-established connections in 2004 and 2005 were due to scanning activities
by viruses/worms. Specifically, the dominant TCP ports were 135, 445, 80, and
3127 (mainly mydoom) in 2004, and 9898, 5554, 135, and 445 (mainly sasser) in
2005.

Close Behavior of Established Connections. We shall deal with the fol-
lowing types of TCP closing behavior for established connections [3,11]:

– 2FIN: a connection normally closed with 2 FIN packets.
– RST: a connection was reset by either of the hosts.
– RST+FIN: one sent a FIN for closing, but the other replied a RST. This

can be observed in a pair of web server and browser [3], and P2P nodes [11].
– 1FIN: one sent a FIN packet but there was no response from the other.
– unclosed: a connection lasts during a measurement time period.
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Fig. 3. Breakdown of established connections

Figure 3 is a breakdown of the closing behaviors of the established connections;
(a) web connections (port = 80, 443, 8080), (b) connections with higher ports
(ports ≥ 1024), and (c) connections with ports known to be used by virus/worm.
For web connections, complete connections (2FIN) accounted for 60-80% during
the observed periods. The RST decreased gradually over time, and 10-20% of
the TCP flows closed with RST+FIN which appeared in some pairs of Win-
dows server-clients [11]. On the other hand, connections with higher ports show
intrinsic behavior. The number of unclosed connections was large during 2001-
2005. This is to be expected because P2P traffic flows are long lived. Also, the
higher port connections included long-lived FTP-related traffic in earlier peri-
ods. A large portion of the RST+FIN flows was mainly due to the P2P software
with port 6343. A similar observation was reported in [11], in which some P2P
software saved resources by sending RST instead of FIN. In addition, the minor
contribution of recent RST+FIN flows suggests that P2P software has shifted
its behavior from RST+FIN to 2FIN. Moreover, we confirmed that one of the
contributions to the RST behavior was related to spam assassin. Finally, the
behavior of the worm flows (d) is clearly dissimilar to others. The flows with
2FIN were dominant in 2001-2002, and most of them were legitimate, though we
could not distinguish between legitimate web and code red worm with port 80.
However, from 2003, 20-80% of RST flows were with port 139, 445, and 1433.
The increase in RST+FIN in 2006-2007 as well as 1FIN in 2006 was mainly due
to Blaster worm (port 1433, 4444, and 4899). Thus, the worm types of flows
were mainly characterized in terms of RST and RST+FIN.

Non-Established Connections. Non-established connections are classified
into (a) only SYN packet and (b) SYN and corresponding RST packet. More
than 90% of only SYN behavior were due to worms, 90% for higher ports, and
50-90% for Web. The high ratio of SYN and RST packets for web was due to
scanning to the web server. The ratio was stable over the observed period.

4.2 Delay Behavior

Here, we investigate the delays as calculated from TCP flows. There are a number
of algorithms to estimate the RTT. A simple and reliable estimation algorithm,
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called Syn-Ack (SA) method, is to use the delays in the 3whs phase [10]. In order
to process the data with the SA method, we first identified the direction of the
link from the MAC address of the packet, and then translated the source and
destination IP addresses of the packet into AS numbers by extracting BGP rout-
ing information extracting from the routeview data. Consequently, we obtained
the average round trip delay from the measurement point to each ASes.

Figure 4 shows the complementary cumulative distribution of delays over time
in log-log scale. All curves are characterized by a long-tail and close to a power-
law decay; most hosts communicate with relatively closer (in time) hosts (e.g.,
90% of the RTTs are less than 500ms), though we still observed longer delays
over 1s with a certain probability. The tails of the curves were longer during
congested periods (2006) than during non-congested periods, although the link
upgrade resulted in faster decaying tails.

In order to understand the average behavior of the delay, Fig. 5 presents the
mean and median of the delay calculated per AS. The means of the delay are
relatively stable; the mean in 2001 was close to that in 2010, and the effect of
the congestion did not clearly appear in the mean delay. On the other hand,
the median has increasing trend independent of the link upgrade. In particular,
during 2006-2010, the median increased from 200ms to 300ms despite the de-
crease in the mean from 250ms to 180ms. Thus, although fewer extremely long
delays (i.e., insufficient path) occurred, a large number of ASes were nonetheless
characterized by a longer delay.
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Furthermore, to investigate ASes with longer delays, Fig. 6 displays the scat-
ter plots of the mean delay between (a) 2001 and 2006, (b) 2006 and 2010, and
(c) 2001 and 2010 for ASes commonly appearing in both datasets. The region
below the diagonal line indicates the reduction in delay. The different symbols
in the figure indicate the geographical difference of the ASes based on Inter-
net registries. The results roughly reflect the geographical distance of the ASes
(ARIN < RIPE < LACNIC < AFRNIC) from Japan. We also observed large
changes in the delays; During 2001-2006, the delay of the ASes in LACNIC from
Japan significantly decreased. Also, during 2006 and 2010, the delay in APNIC
apparently decreased. In this sense, insufficient paths must have decreased in
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number during the observed period. However, the fact that we saw larger delays
suggests that the Internet paths have a large variability and still there is likely
more room to optimize the global routes. From 2001 to 2006, 55% of the ASes
increased their delay, and only 60% of them decreased it from 2006 to 2010. As
a whole, 55% of ASes decreased their delay from 2001 to 2010.

We also confirmed that the AS path length calculated from the BGP data
collected by the WIDE project showed that the average shortest AS paths were
stable (mean: 3.4-3.6hops, median: 3hops) in 2004-2010. Thus, the change in the
RTTs cannot be explained only by the AS hops.

In summary, the largely inefficient paths have been less appeared over time,
however, the median delay becomes larger from the observation of TCP flows.

4.3 TCP Options

Finally, we analyze the deployment and availability of TCP options that provide
extensional functionalities for performance improvements. End hosts negotiate
available TCP options in the 3whs phase; an initiator host sends a list of avail-
able TCP options: then a responder replies with the list of acceptable options.
Consequently, the agreed-upon options are used in the connection. The options
we analyzed were Max segment size (MSS), Selective ACK (SACK), Timestamp,
and Window scale options. The possible results of the negotiation are (1) OK
(i.e., both agreed), (2) NG (i.e., rejected by either of hosts), and (3) None (i.e,
no option was exchanged).
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Fig. 7. Breakdown of TCP options

Figure 7 displays the status of TCP options for established connections. We
omitted MSS options because it was fully deployed in 2001. The use of the SACK
option has increased over time, and was available in 90% of the connections in
2010, compared with only 10% in 2001. Over 80% of SACK-denied hosts were
web server (i.e., the source port is 80/8080/443). This finding is consistent with
the previous study [11]; however, we found that the rejection ratio has recently
decreased. A plausible reason of the high availability of the SACK option is its
early deployment in Windows; it was turned on by default in Window 98.

On the other hand, the availability of timestamp and window scale options was
less than 60% even in 2010. Window scale and timestamp options in Windows
2000/XP are turned off by default, but are enabled in recent Windows (Vista
and 7). The options are enabled by default in Linux and BSD-inherent OSes.
According to the breakdown of the OS type of the hosts in the data set by passive
OS fingerprinting (p0f), we found that Windows 2000/XP hosts accounted for
77% of the total even in 2010, while recent Windows (Vista and Seven) hosts
only accounted for 3%. The availability of those two options will increase in
the near future as more of the recent Windows get deployed on hosts, and this
eventuality will likely place higher throughputs on each TCP flows. However,
we could not find a clear correlation between the value of the window scale and
the throughput. Further investigations will be required before we can make a
detailed quantification of this issue.

5 Conclusion

In this paper, we investigated the longitudinal characteristics of TCP flows from
passive measurements made at a trans-pacific transit link over 10 years. The
environment of the measurement link has changed in several aspects (i.e., con-
gestion, link upgrade, applications). The main findings of the analysis are (1) the
median RTT per ASes increased over time while the number of extremely insuf-
ficient paths are less appeared, and (2) the deployment and use of TCP SACK
options has significantly increased, but time stamp and window scale options
have yet to be fully utilized.
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Abstract. In this paper, we address the problem of comparing the performance
perceived by end users when they use different technologies to access the Internet.
We focus on three key technologies: Cellular, ADSL and FTTH. Users primarily
interact with the network through the networking applications they use. We tackle
the comparison task by focusing on Web search services, which are arguably a
key service for end users. We first demonstrate that RTT and packet loss alone are
not enough to fully understand the observed differences or similarities of perfor-
mance between the different access technologies. We then present an approach
based on a fine-grained profiling of the data time of transfers that sheds light on
the interplay between service, access and usage, for the client and server side. We
use a clustering approach to identify groups of connections experiencing similar
performance over the different access technologies. This technique allows to at-
tribute performance differences perceived by the client separately to the specific
characteristics of the access technology, behavior of the server, and behavior of
the client.

Keywords: TCP, Performances, Web search, User behaviors, Access Impact.

1 Introduction

Telecommunication operators offer several technologies to their clients for accessing
the Internet. We have observed an increase in the offering of cellular and Fiber-To-The-
Home (FTTH) accesses, which now compete with the older ADSL and cable modem
technologies. However, until now it is unclear what are the exact implications of the
significantly different properties of these access technologies on the quality of service
observed by clients.

Our main objective in this paper is to devise a methodology to compare the perfor-
mance of a given service over different access technologies. We consider three popular
technologies to access the Internet: Cellular, ADSL, and FTTH. We use traces of end
users traffic collected over these three types of access networks under the control of a
major European ISP. We focus on an arguably key service for users: Web search en-
gines, esp. Google and Yahoo.
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In this paper, we present a methodology to separately account for the impact of ac-
cess, service usage, and application on top. The methodology is based on breaking down
the duration of an entire Web transaction into sub-components which can be attributed
to network or either of the end points. This kind of approach is vital because the typical
performance metrics such as average latency, average throughput, and packet loss only
give an overview of the performance but do not say much about what the origins are.

Our methodology can be applied in different ways depending on the objectives of the
study. For example, a service provider might only want to analyze the performance con-
tribution of the server, while an ISP could be more interested in the (access) network’s
contribution. In both cases, the focus of the study could be the performance observed by
the majority of clients or, alternatively, troubleshooting through identification of perfor-
mance anomalies. We exemplify various use cases for Yahoo and Google Web search
services.

2 Related Work

Comparing the relative merits of different access technologies has been the subject of
a number of studies recently. In [1], the authors analyze passive traffic measurements
from ADSL and FTTH commercial networks under the control of the same ISP. They
demonstrate that only a minority of clients and flows really take advantage of the high
capacity of FTTH access. The main reason is the predominance of p2p protocols that
do not exploit locality and high transmission capacities of other FTTH clients.

In [2], the authors investigate the benefits and optimizations of TCP splitting for ac-
celerating cloud services, using web search as an exemplary case study and through an
experimental system deployed in a production environment. They report that a typical
response to an average search query takes between 0.6 and 1.0 second (between the
TCP SYN and the last HTTP packet). The RTT between the client and the data-center
during the measurement period was around 100 milliseconds. Search time within the
data-center ranges almost uniformly between 50 and 400 msec1. Four TCP windows
are required to transfer the result page to the client when there is no packet loss. The
total time taken in this case is 5RTT + search time.

In [3], the authors present results from a measurement campaign for GPRS, EDGE,
cellular, and HSDPA radio access, to evaluate the performance of web transfers with
and without caching. Results were compared with the ones of a standard ADSL line
(down:1Mb/s; up:256kb/s). Benchmarks reveal that there is a visible gain introduced
by proxies within the technologies: HSDPA is often close to ADSL but does not out-
perform it; In EDGE, the proxy achieves the strongest improvement, bringing it close
to HSDPA performance.

In [4], the authors quantify the improvement provided by a 3G access compared to
2G access in terms of delays and throughput. They demonstrate that for wired access
networks (ADSL and FTTH) the average number of servers accessed per subscriber is
one order of magnitude lower on the mobile trace, esp. because of the absence of P2P
traffic. Focusing on the user experience when viewing multimedia content, they show
how their behavior differs and how the radio access type influences their performance.

1 We observe a significant fraction of values outside of this range in Section 6.
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In [5] authors analyze Web search clickstreams by extracting the HTTP headers
and bodies from packet-level traffic. They found that most queries consist of only one
keyword and make little use of search operators, users issue on average four search
queries per session, of which most consecutive ones are distinct. Relying on a devel-
oped Markov model that captures the logical relationships of the accessed Web pages
authors reported additional insights on users’ Web search behavior.

In [6] Stamou and all studied how web information seekers pick the search keywords
to describe their information needs and specifically examine whether query keyword
specifications are influenced by the results the users reviewed for a previous search.
Then, they propose a model that tries to capture the results’ influence on the specifica-
tion of the subsequent user queries.

3 Data Sets

We study three packet level traces of end users traffic from a major French ISP involving
different access technologies: ADSL, cellular and FTTH. ADSL and FTTH traces cor-
respond to all the traffic of an ADSL and FTTH Point-of-Presence (PoP) respectively,
while the cellular trace is collected at a GGSN level, which is the interface between the
mobile network and the Internet. The cellular corresponds to 2G and 3G/3G+ accesses
as clients with 3G/3G+ subscriptions can be downgraded to 2G depending on the base
station capability. Table 1 summarizes the main characteristics of each trace.

Table 1. Traces Description

cellular FTTH ADSL
Date 2008-11-22 2008-09-30 2008-02-04

Starting Capture 13:08:27 18:00:01 14:45:02:03
Duration 01:39:01 00:37:46 00:59:59

Number of Connections 1772683 574295 594169
Well-behaved connections 1236253 353715 381297

Volume Upload(GB) 11.2 51.3 4.4
Volume Download(GB) 50.6 74.9 16.4

In the present work, our focus is on applications on top of TCP, which carries the
vast majority of bytes in our 3 traces, and close to 100% for the cellular technology.
We restrict our attention to the connections that correspond to presumably valid and
complete transfers, that we term well-behaved connections. Well-behaved connections
must fulfill the following conditions: (i) A complete three-way handshake; (ii) At least
one TCP data segment in each direction; (iii) The connection must finish either with a
FIN or RESET flag. Well-behaved connections carry between 20 and 125 GB of traffic
in our traces (see Table 1).

4 Web Search Traffic: A First Look

In this section, we focus on the traffic related to Google Web Search engine, which is the
dominant Web Search engine in our traces. We focus here on the overall performance
metrics before introducing our methodology for finer grained analysis in Section 5. We
compare the Google and Yahoo cases in Section 6.
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To identify traffic generated by the usage of Google search engine, we isolate con-
nections that contain the string www.google.com/fr in their HTTP header. Relying sim-
ply on information at the IP and TCP layers would lead to incorporate in our data set
other services offered by Google like gmail or Google map, which are serviced by the
same IPs.

To identify Google search traffic for the upstream and downstream directions, we
use TCP port numbers and remote address resolution. Table 2 summarizes the amount
of Google search traffic we identified in our traces. We observed that FTTH includes
the smallest number of such connections among the three traces, one explanation of this
phenomenon was the short duration of the FTTH trace.

Table 2. Google Search Traffic in the Traces

Cellular FTTH ADSL
Well-behaved Connections 29874 1183 6022

Data Packets Upload 107201 2436 18168
Data Packets Download 495374 7699 139129

Volume Upload(MB) 74.472 1.66 11.39
Volume Download(MB) 507.747 8 165.79

4.1 Connection Size

Figure 1(a) depicts the cumulative distribution of well-behaved Google search connec-
tion size in bytes. It appears that data transfer sizes are very similar for the three access
technologies. This observation constitutes a good starting point since the performance
of TCP depends on the actual transfer size. RTTs and losses also heavily influence TCP
performance, as the various TCP throughput formulas indicate [7, 8]. Also, the available
bandwidth plays a role. With respect to these metrics, we expect the performance of a
service to be significantly influenced by the access technology since available band-
width, RTTs2 and losses are considerably different over ADSL, FTTH and Cellular.
However, as we demonstrate in the remaining of this section, those metrics alone fail to
fully explain the performance observed in our traces.
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Fig. 1. General Performances

4.2 Latency

Several approaches have been proposed to accurately estimate the RTT from a single
measurement point [11–15]. We considered two such techniques. The first method is

2 As noted in several studies on ADSL [9] and Cellular networks[10], the access technology
often contributes to a significant fraction of overall RTT.
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based on the observation of the TCP 3-way handshake [12]: one first computes the
time interval between the SYN and the SYN-ACK segment, and adds to the latter the
time interval between the SYN-ACK and its corresponding ACK. The second method
is similar but applied to TCP data and acknowledgement segments transferred in each
direction3. One then takes the minimum over all samples as an estimate of the RTT.
It is important to note that we take losses into account in our analysis (see next
section).

We observed that both estimation methods (SYN-/SYN-ACK and DATA-ACK) lead
to the same estimates except for the case of cellular access because of a Performance
Enhancing Proxy (PEP) which biased the results from the SYN-/SYN-ACK method, as
the PEP responds to SYN packets from the clients on behalf of the servers. We thus
rely on the DATA-ACK method to estimate RTTs over the 3 technologies. Figure 1(b)
depicts the resulting RTT estimations for the 3 traces (for Google Web search service
only). It clearly highlights the impact of the access technology on the RTT. FTTH access
offer very low RTT in general – less than 50 ms for more than 96% of connections.
This finding is in line with the characteristics generally advertised for FTTH access
technology. In contrast, RTTs on the Cellular technology are notably longer than under
ADSL and FTTH.

4.3 Packet Loss

To assess the impact of TCP loss retransmission times on the performance of Google
Web search traffic, we developed an algorithm to detect retransmitted data packets,
which happen between the capture point and the server or between the capture point
and the client. This algorithm4 is similar to the one developed in [11].
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Fig. 2. Immediate Access Impacts

If ever the loss happens after the observation point, we observed the initial packet and
its retransmission. In this case, the retransmission time is simply the duration between

3 Keep in mind that we focus on well-behaved transfers for which there is at least one data
packet in each direction. Hence, we can apply the second method.

4 The used loss’ detection algorithm is available on http://intrabase.eurecom.fr/
tmp/papers.html. People are invited to check the correctness of our algorithm to detect
losses.
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those two epochs5. When the packet is lost before the probe, we infer the epoch at
which it should have been observed, based on the sequence numbers of packets. We
try to separate real retransmission from network out of sequence events by eliminating
durations smaller than the RTT of the connection.

Figure 2(a) depicts the cumulative distribution of retransmission time per connection
for each trace. Retransmissions are clearly more frequent for the cellular access with
more than 25% of transfers experiencing losses compared to less than 6% for ADSL
and FTTH accesses. From previous works, we noticed that several factors explain high
loss ratio for cellular access. In fact, in [16] authors recommend to use a loss detec-
tion algorithm, which uses dumps of each peer of the connection (this algorithm is not
adapted for our case because our measurements have been collected at a GGSN level)
to avoid spurious Retransmission Timeouts in TCP. In addition, authors report in [10]
that spurious retransmission ratio, for SYN and ACK packets, in cellular networks is
more higher for Google servers than other ones, due to short implemented Timeouts.

Most of the transfers are very short in terms of number of packets and we know that
for such transfers, packet loss has a detrimental impact to the performance[17]. Thus,
the performance of these transfers are dominated by the packet loss. In Sections 5.3
and 6, we analyze all connections, including the ones that experience losses by first
removing recovery times from their total duration.

4.4 Application Level Performance

Our study of the two key factors that influence the throughput of TCP transfers , namely
loss rate and RTT, suggest that, since Google Web search transfers have a similar pro-
file on the 3 access technologies, the performance of this service over FTTH should
significantly outperform the one of ADSL, which should in turn outperform the one
of Cellular. It turns out that reality is slightly more complex as can be seen from
Figure 2(b) where we report the distribution of transfer times (the figure for through-
put is qualitatively similar but we prefer to report transfer times since Web search is
an interactive service). Indeed, while the Cellular technology offers significantly longer
response time, in line with RTT and loss factors, FTTH and ADSL have much closer
performance than RTT and loss were suggesting.

In the next section, we propose a new analysis method that uncovers the impact of
specific factors like the application and the interaction with user, and thus informs the
comparison of access technology.

5 Interplay between Application, Usage and Access

The analysis method that we use consists in two steps. In the first step, the transfer time
of each TCP connection is broken down into several factors that we can attribute to
different causes, e.g., the application or the end-to-end path. In a second step, we use
a clustering approach to uncover the major trends within the different data sets under
study.

5 Those epochs are computed at the sender side by shifting the time series according to our RTT
estimate.
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5.1 Step 1: Data Time Break-Down

For this first step, we introduce a methodology that has been initially proposed in [17].
The objective is to reveal the impact of each layer that contributes to the overall data
transfer time, namely the application, the transport, and the end-to-end path (network
layer and layers below) between the client and the server.

The starting point is that the vast majority of transfers consist of dialogues between
the two sides of a connection, where each party talks in turn. This means that application
instances rarely talk simultaneously on the same TCP connection [17]. We call the
sentences of these dialogues trains.

Fig. 3. Data Time Break-Down

We term A and B the two parties involved in the transfer (A is the initiator of the
transfer) and we break down the data transfer into three components: warm-up time,
theoretical time and pacing time. Figure 3 illustrates this break down in the case of a
Google search where A is a client of the ISP and B is a Google server.

A warm-up corresponds to the time taken by A or B before answering to the other
party. It includes durations such as thinking time at the user side or data preparation at
the server side. For our use case, a warm-up of A corresponds to the time spent by the
client to type a query and to browse through the results before issuing the next query
(if any) or clicking on a link, whereas a warm-up of B corresponds to the time spent by
the Google server to prepare the appropriate answer to the request.

Theoretical time is the duration that an ideal TCP transfer would take to transfer an
amount of packets from A to B (or from B to A) equal to the total amount of packets
exchanged during the complete transfer. Theoretical time can be seen as the total trans-
fer time of this ideal TCP connection that would have all the data available right at the
beginning of the transfer. For this ideal transfer, we further assume that the capacity of
the path is infinite and an RTT equal to RTTA−B (or RTTB−A).
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Once warm-up and theoretical times have been substracted from the total transfer
time, some additional time may remain. We term that remaining time pacing time.
While theoretical time can be attributed to characteristics of the path and warm-up time
to applications and/or user, pacing factors effects due either to the access link or some
mechanism higher up in the protocol stack. Indeed, as we assume in the computation of
theoretical time that A and B have infinite access bandwidth, we in fact assume that we
can pack as many MSS size packets within an RTT as needed, which is not necessarily
true due to a limited access bandwidth. In this case, the extra time will be factored in the
pacing time. Similarly, if the application or some middle-boxes are throttling the trans-
mission rate, this will also be included in the pacing time. A contextual interpretation
that accounts for the access and application characteristics is thus needed to uncover
the cause behind observed pacing time. The above breakdown of total transfer time is
computed for each side A and B separately.

Fig. 4. Abnormal Long Response Time at The Server Side (Warm-up B value)

We report on Figure 4 an example of observed large warm-up time at the server side,
for a client behind an ADSL access. We noticed that the acknowledgement received
from the server indicates that the query (GET request) has been correctly received by
the server, but it takes about 4.5 seconds before the client starts to receive the requested
object (a png image in this case). As we can see next in Section 5.3, an easy identifica-
tion of these extreme cases can be a useful application of our methodology.

5.2 Step 2: Data Clustering

The second analysis step is new as compared to our previous work [17]. For this second
step, we use clustering approaches to obtain a global picture of the relation between the
service, the access technology and the usage.

At the end of step 1, each well-behaved Google search connection is transformed
into a point in a 6-dimensional space (pacing, theoretical and train time of the client
and the server). To mine this data, we use a clustering technique to group connections
with similar characteristics. We use an unsupervised clustering approach as we have
no a priori knowledge of the characteristics of the data to be analyzed, e.g., a model
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of normal and abnormal traffic. We chose the popular Kmeans algorithm. A key issue
when using Kmeans is the choice of the initial centroids and the number of clusters
targeted. Concerning the choice of the centroids, we perform one hundred trials and
take the best result, i.e., the one that minimizes the sum over all clusters of the distances
between each point and its centroid.

To assess the number of clusters, we rely on a visual dimensionality reduction tech-
nique, t-SNE (t-Distributed Stochastic Neighbour Embedding)[18]. t-SNE projects
multi-dimensional data on a plane while preserving the inner neighbouring character-
istics of data. Application of t-SNE to our 6-dimensional data leads to the right plot of
Figure 5(a). This figure indicates that a natural clustering exists within our data. In ad-
dition, a reasonable value for the number of clusters lies between 5 and 10. Last but not
least the right plot of Figure 5(a) suggests that some clusters are dominated by a specific
access technology while some others are mixed. We picked a value of 6 for the number
of clusters in Kmeans. Note that we use the matlab implementation of Kmeans [19].

5.3 Results

Figure 5(b) depicts the 6 clusters obtained by application of Kmeans. We use boxplots6

to obtain compact representations of the values corresponding to each dimension. We
indicate, on top of each cluster, the number of samples in the cluster for each access
technology. We use the same number of samples per access technology to prevent any
bias in the clustering, which limits us to 1000 samples, due to the short duration of the
FTTH trace. The ADSL and Cellular samples were chosen randomly among the ones in
the respective traces. We also plot in Figure 6(b) the size of the transfers of each cluster
and their throughput7.

We first observe that the clusters obtained with Kmeans are in good agreement with
the projection obtained by t-SNE as indicated in the left plot of Figure 5(a), where data
samples are indexed using their cluster id in Kmeans.

Before delving into the interpretation of the individual clusters, we observe that three
of them carry the majority of the bytes. Indeed, Figure 6(a) indicates that clusters 1 and
2 and 6 represent 83% of the bytes. Let us first focus on these dominant clusters.

Clusters 1, 2 and 6 are characterized by large warm-up A values, i.e., long waiting
time at the client side in between two consecutive requests. The warm-up A values are
in the order of a few seconds, which are compatible with human actions. This behavior
is in line with the typical use of search engines where the user first submits a query
then analyzes the results before refining further her query or clicking on one of the
links of the result page. Thus, the primary factor that influences observed throughputs
in Google search traffic is the user behavior. In fact, identified values in clusters 1, 2 and
6 of Warm-up A are in line with results in [6] of the time between query submission
and first click, where authors identified different users trends.

6 Boxplots are compact representations of distributions: the central line is the median and the
upper and lower of the box the 25th and 75th quantiles. Extreme values -far from the waist of
the distribution - are reported as crosses.

7 We compute the throughput by excluding the tear down time, which is the time between the last
data packet and the last packet of the connection. This specific metric that we term Application
Level (AL) throughput offers a more accurate view of the user experience [17].
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Fig. 6. Google Search Engine Parameters

We can further observe that clusters 1 and 2 mostly consist of cellular connec-
tions while cluster 6 consists mostly of FTTH transfers. This means that the clustering
algorithm first based its decision on the Warm-up A value; then, this is the access tech-
nology that impacts the clustering. As ADSL offers intermediate characteristics as com-
pared to FTTH and Cellular, ADSL transfers with large Warm-up A values are scattered
on the three clusters.

Let us now consider clusters 3, 4 and 5. Those clusters, while carrying a tiny frac-
tion of traffic, feature several noticeable characteristics. First, we see almost no cellular
connections in those clusters. Second, they total two thirds of the ADSL and FTTH
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connections, even though they are smaller than the ones in clusters 1, 2 and 6 – see
Figure 6(b). Third, those clusters, in contrast to clusters 1, 2 and 6 have negligible
Warm-up A values. From a technical viewpoint, Kmeans separates them based on the
RTT as cluster 5 exhibits larger ThA and ThB values and also based on Pacing B values.
After a further analysis of these clusters we observed that they corresponds to very short
connection with an exchange of 2 HTTP frames, Google servers finish current connec-
tion after an idle period of 10 seconds. Moreover, cluster 3 presents cases when client
opens Google web search page in their Internet browser without performing any search
request, then after a time-out of 10 seconds Google server close the connection. In other
hand, cluster 4 and 5 corresponds to Get request and HTTP OK response with an ef-
fective search, the main difference between cluster 4 and 5 were RTT and connection
size.

More generally, we expect that our method, when applied to profile other services,
will lead to some clusters that can be easily related to the behavior of the service under
study while some others will relate anomalous or unsual behaviors that might require
further investigation. For the case of Google search engine, we do not believe cluster
3,4,5 are anomalies per se that affects the quality of experience of users since the large
number of connections in those clusters would prevent the problem from flying below
the radar. We found only very few cases where the server’s impact to the performance
was dominating and directly impacting the quality of experience of the end user. Ob-
serving many such cases would have indicated issues, e.g., with service implementation
or provisioning.

6 Contrasting Web Search Engines

The main idea in this section is to contrast Google results with others Web search ser-
vices. For the case of our traces, we observed that the second dominant Web Search
engine is Yahoo, though with an order of magnitude less connections. This low num-
ber of samples somehow limits the applicability of our clustering approach as used in
the Google case. We restrict our attention to the following questions: (i) Do the two
services offer similar traffic profile? (ii) Are services provisioned in a similar manner?
Architecture of Google and Yahoo data-centers are obviously different but they must
both obey the constraint that the client must receive its answer to a query in a maximum
amount of time that is in the order of a few hundreds of milliseconds [2]. We investigate
the service provisioning by analyzing the Warm-up B values (data preparation time at
server) offered by the two services.

6.1 Traffic Profiles

Figure 7(a) shows cdfs of data connections size for Cellular, FTTH and ADSL traces for
both Google and Yahoo. We observe for our traces that Yahoo Web search connections
are larger than Google ones. An intuitive explanation behind this observation is that
Yahoo Web search pages contain, on average, more photos and banners than ordinary
Google pages.
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Fig. 7. Yahoo vs. Google Web search services

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

Warm−up B (Milliseconds)

C
D

F

 

 

CELL − Yahoo
CELL − Google
ADSL − Yahoo
ADSL − Google

(a) Yahoo vs. Google

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

Warm−up B (Milliseconds)

C
D

F

 

 

ADSL
CELL: Windows
CELL: Iphone
CELL: Windows−CE

(b) Google

Fig. 8. Warm-up B

Figure 7(b) plots cdfs of RTTs. We can observe that RTT values on each access
technology are similar for the two services, which suggests that the servers are located
in France and that it is the latency of the first hop that dominates.

We do not present clustering results for Yahoo due to the small number of samples
we have. However, a preliminary inspection of those results revealed the existence of
clusters due to long Warm-up A values, i.e. long waiting times at the client side – in
line with our observations with the Google Web search service. In the next section, we
focus on the waiting time at the server side.

6.2 Data Preparation Time at the Server Side

Figure 8(a) presents the cdf of warm-up B8 values for both Yahoo and Google for the
ADSL and Cellular technology (we do not have enough samples on FTTH for Yahoo
to present them). We observe an interesting result: for both Yahoo and Google, the time
to craft the answer is longer for cellular than for the ADSL technology. It suggests that
both services adapt the content to cellular clients. A simple way to detect that the remote
client is behind a wired or wireless access is to check its Web browser-User Agent as re-
ported in the HTTP header. This is apparently what Google does as Figure 8(b) reveals
(again, due to a low number of samples on Yahoo, we are not able to report a similar
breakdown). Indeed, cellular clients featuring a laptop/desktop Windows operating sys-
tem (Vista/XP/2000) experience similar warm-up B as ADSL clients while clients using
Iphones or a Windows-CE operating system experience way higher warm-up B. As the
latter category (esp. Iphones: more than 66% of Google connections) dominates in our

8 We have one total warm-up B value per connection, which is the total observed warm-up B for
each train.
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dataset they explain the overall cellular plot of Figure 8(a). Note that further investiga-
tions would be required to fully validate our hypothesis of content adaptation. We could
think of alternative explanations like a different load on the servers at the capture time
or some specific proxy in the network of the ISP. However, it is a merit of our approach
to pinpoint those differences and attribute them to some specific components like the
servers here.

7 Conclusion

In this paper, we tackled the issue of comparing networking applications over different
access technology – FTTH, ADSL and Cellular. We focused on the specific case of
Web search services. We showed that packet loss, latency, and the way clients interact
with their mobile phones all have an impact on the performance metrics on the three
technologies. We devised a technique that (i) automatically extracts the impact of each
of these factors from passively observed TCP transfers and (ii) group together, with
an appropriate clustering algorithm, the transfers that have experienced similar perfor-
mance over the three access technology. Application of this technique to the Google
Web search service demonstrated that it provides easily interpretable results. It enables
for instance to pinpoint the impact of usage or of raw characteristics of the access tech-
nology. We further compared Yahoo and Google Web search traffic and provided evi-
dences that they are likely to adapt content to the terminal capability for cellular clients
which impacts the performance observed. As future work, we will apply our approach
to the profiling of other network services, which should be straightforward since our ap-
proach is application agnostic (we did not make any hypothesis on Google Web search
to profile it). We intend to profile, among others, applications which are more bandwidth
demanding like HTTP streaming. We also would like to investigate the usefulness of the
method at higher levels of granularity, such as session or client level.
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Abstract. Internet traffic measurement and analysis has become a sig-
nificantly challenging job because large packet trace files captured on fast
links could not be easily handled on a single server with limited comput-
ing and memory resources. Hadoop is a popular open-source cloud com-
puting platform that provides a software programming framework called
MapReduce and the distributed filesystem, HDFS, which are useful for
analyzing a large data set. Therefore, in this paper, we present a Hadoop-
based packet processing tool that provides scalability for a large data
set by harnessing MapReduce and HDFS. To tackle large packet trace
files in Hadoop efficiently, we devised a new binary input format, called
PcapInputFormat, hiding the complexity of processing binary-formatted
packet data and parsing each packet record. We also designed efficient
traffic analysis MapReduce job models consisting of map and reduce
functions. To evaluate our tool, we compared its computation time with
a well-known packet-processing tool, CoralReef, and showed that our
approach is more affordable to process a large set of packet data.

1 Introduction

Internet traffic measurement and analysis needs a lot of data storage and high-
performance computing power to manage a large traffic data set. Tcpdump [1] is
widely used for capturing and analyzing packet traces, and various tools based on
the packet capture library, “libpcap” [1], such as wireshark [2], CoralReef [3], and
snort [4] have been deployed to handle packets. For aggregated information of a
sequence of packets sharing the same fields like IP addresses and port numbers,
Cisco NetFlow [5] is extensively employed to observe traffic passing through
routers or switches in the unit of a flow. However, these legacy traffic tools are
not suited for processing a large data set of tera- or petabytes monitored at high-
speed links. In analyzing packet data for a large-scale network, we often have to
handle hundreds of giga- or terabyte packet trace files. When the outbreaks of
global Internet worms or DDoS attacks occur, we also have to process quickly
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a large volume of packet data at once. Yet, with legacy packet processing tools
running on a single high-performance server, we cannot perform fast analysis
of large packet data. Moreover, with a single-server approach, it is difficult to
provide fault-tolerant traffic analysis services against a node failure that often
happens when intensive read/write jobs are frequently performed on hard disks.

MapReduce [6], developed by Google, is a software paradigm for processing
a large data set in a distributed parallel way. Since Google’s MapReduce and
Google file system (GFS) [7] are proprietary, an open-source MapReduce soft-
ware project, Hadoop [8], was launched to provide similar capabilities of the
Google’s MapReduce platform by using thousands of cluster nodes. Hadoop dis-
tributed filesystem (HDFS) is also an important component of Hadoop, that cor-
responds to GFS. Yahoo!, Amazon, Facebook, IBM, Rackspace, Last.fm, Netflix
and Twitter are using Hadoop to run large-scale data-parallel applications coping
with a large set of data files. Amazon provides Hadoop-based cloud computing
services called Elastic Compute Cloud (EC2) and Simple Storage Service (S3).
Facebook also uses Hadoop to analyze the web log data for its social network
service. From the cloud computing environment like Hadoop, we could benefit
two features of distributed parallel computing and fault tolerance, which could
fit well for packet processing tools dealing with a large set of traffic files. With
the MapReduce programming model on inexpensive commodity PCs, we could
easily handle tera- or petabyte data files. Due to the cluster filesystem, we could
provide fault-tolerant services against node failures.

In this paper, hence, we present a Hadoop-based packet trace processing tool
that stores and analyzes the packet data on the cloud computing platform. Ma-
jor features of our tool are as follows. First, it could write packet trace files
in libpcap format on HDFS, with which the problem of archiving and manag-
ing large packet trace files is easily solved. Second, our tool could significantly
reduce the traffic statistics computation time of large packet trace files with
MapReduce-based analysis programs, when compared with the traditional tool.
For these purposes, we have implemented a new binary file input/output module,
PcapInputFormat, which reduces the processing time of packet records included
in trace files, because text files are used for the conventional input file format in
Hadoop. In addition, we have designed packet processing MapReduce job models
consisting of map and reduce tasks.

The remaining of this paper is organized as follows. In Section 2, we describe
the related work on MapReduce and Hadoop. The architecture of our tool and
its components are explained in Section 3, and the experimental results are
presented in Section 4. Finally Section 5 concludes this paper.

2 Related Work

For Internet traffic measurement and analysis, there are a lot of packet-processing
tools such as tcpdump, CoralReef, wireshark, and snort. Most of these packet-
processing tools are run on a single host with the limited computing and storage
resources.
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Fig. 1. The overview of Hadoop-based packet file processing tool, Parallel Packet Pro-
cessor (P 3)

As the MapReduce platform has been popular, a variety of data mining or
analytics applications are emerging in the fields of natural sciences or business
intelligence. Typical studies based on Hadoop are text-data analysis jobs like
web indexing or or log analysis. For the network management fields, snort log
analysis was tried with Hadoop in [9]. In our previous work [10], we have de-
vised a simple MapReduce-based NetFlow analysis method that could analyze
text-converted NetFlow v5 files, which showed that MapReduce-based NetFlow
analysis outperforms popular flow-tools. In this paper, we present a Hadoop-
based packet trace analysis tool that could process enormous volumes of libpcap
packet trace files.

On the other hand, there has been few work on dealing with non-text files
coherently in Hadoop. As for extending the Hadoop API, Conner [11] has cus-
tomized Hadoop’s FileInputFormat for image processing, but has not clearly
described its performance evaluation results. Recently, there have been a few
studies [12, 13, 14] to improve the performance of Hadoop. Zaharia et al. [12]
have designed an improved scheduling algorithm that reduces Hadoop’s re-
sponse time by considering a cluster node performing poorly. Kambatla et al.
[13] proposed a Hadoop provisioning method by analyzing and comparing re-
source usage patterns of various MapReduce jobs. Condie et al. [14] devised
a modified MapReduce architecture that allows data to be pipelined between
nodes, which is useful for interactive jobs or continuous query processing
programs.
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3 Processing Packet Trace Files with Hadoop

Parallel Packet Processor (P 3)1 consists of three main components: the Packet
Collector/Loader that saves packets to HDFS from the online packet source
using libpcap or the captured trace file; the Packet Analyzer implemented by
map and reduce tasks processing packet data; and the Hadoop IO formats that
read packet records from files on HDFS and return the analysis results. The
overall architecture is illustrated in Fig. 1.

3.1 Packet Collector/Loader

P 3 analyzes packet trace files generated by either a packet sniffing tool such
as tcpdump or our own packet-capturing module, Packet Collector/Loader. The
Packet Collector captures packets from a live packet stream and save them to
HDFS simultaneously, which enables P 3 to collect packets directly from packet
probes. Given packet trace files in the libpcap format, Packet Loader reads files
and splits them into the fixed-size of chunks, and save the chunks of files to
HDFS. Network operators will irregularly copy captured packet trace files to
HDFS in order to analyze detailed characteristics of the trace.

The Packet Collector uses libpcap and jpcap modules for capturing packets
from a live source, and the HDFS stream writer for saving packet data. To use
this stream writer, we developed a HDFS writing module in Java. The Packet
Collector can capture packets by interacting with the libpcap module through
jpcap. The Packet Loader just saves the packet trace file to HDFS by using
the Hadoop stream writer. Within HDFS, each packet trace file larger than
the specified HDFS block size (typically 64 MB) is split, and three replicas (by
default) for every block are copied into HDFS for fault tolerance. The trace file
contains binary-formed packet data, which has the non-fixed length of packet
records.

3.2 New Binary Input/Output Format for Packet Records

In the Hadoop cluster environment, network bandwidth between nodes is a criti-
cal factor for the performance. To overcome the network bottleneck, MapReduce
collocates the data with its computing node if possible. HDFS has concepts of a
block which is the unit for writing a file and a split which is the unit for being
processed by MapReduce task. As a block is in a large unit (64 MB by default),
a file in HDFS will be divided into block-sized chunks that are stored as inde-
pendent units. A split is a chunk of the input file that is processed by a single
map task. Each split is divided into records, and passed to the map to process
each record of a key-value pair in turn by an InputFormat.

The text file is a common format for input/output inHadoop.TextInputFormat
can create splits for the text file and parse each split into each line of records by car-
riage return. However, packet trace files are stored in the binary format defined by
libpcap and have no carriage return. Thus, it is necessary to convert binary packet
1 Source codes are available in [15].
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Fig. 2. New Hadoop input/output formats for processing packet trace. This example
shows how the periodic flow statistics is computed. PcapInputFormat is used for reading
packet records to generate flows from packet trace files. BinaryOutputFormat is for
writing binary-form of flow records to HDFS, and BinaryInputFormat for reading flow
records from HDFS to generate flow statistics.

trace files to text ones for the input to Hadoop using TextInputFormat. This con-
version requires sequential processing which consists of reading variable-length
of binary packet records by using the packet length field specified in each packet
header, converting them to text-formed ones, and writing to text ones. Thus, this
causes additional computing time and storage resources, and does not correspond
with a parallel manner of Hadoop.

The process of a Hadoop job consists of several steps. First, before starting a
job, we save large packet trace files on HDFS cluster nodes in the unit of fixed-
length of blocks. When a job is started, the central job controller, Jobtracker,
assigns map tasks to each node to process blocks, and then, map tasks in each
node reads records from the assigned block in parallel. At this point, both the
start location and end location of InputSplits can not be clearly detected within
a fixed-size HDFS block, because each packet record has variable length of binary
data without any record boundary character like a carriage return. That is, there
is no way for each map to know the location of the staring position of the first
packet in the block until another map task running on the previous block finishes
reading the last packet record.

In order to solve this boundary detection issue in manipulating the binary
packet trace files on HDFS in parallel, we have devised PcapInputFormat as a
new packet input module. PcapInputFormat could support parallel packet pro-
cessing by finding the first and last packet location in the HDFS blocks, and by
parsing variable-length of packet records. We also devised BinaryInputForamt
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as the input module of fixed-sized binary records, and BinaryoutputFormat,
the output module of fixed-sized binary records to handle flow statistics using
packet data. Figure 2 shows how the native libpcap binary files are processed
with binary packet input/output formats in the modified Hadoop. There are two
continuous jobs. In the first job, PcapInputFormat is used for reading packets
from packet trace files to generate flows. BinaryOutputFormat is responsible for
writing binary-form of flow records to HDFS. In the second job, we compute
the flow statistics with BinaryInputFormat by reading flow records. Hadoop in
itself could support binary data as inputs and outputs with sequence file format,
but we have to transform packet traces to sequence files by parsing every packet
record sequentially. Therefore, it will not be efficient to use the built-in sequence
file format for handling packet trace files.

Fig. 3. Our heuristic method of PcapInputForamt for finding the first record from each
block using sliding-window

PcapInputFormat. PcapInputFormat includes a sub-class, called
PcapVlenRecordReader, that reads packet records from a block on Hadoop,
and it is responsible for parsing records from the split across blocks. When
each map task reads packet records from blocks stored on HDFS through the
InputFormat concurrently, PcapInputFormat has to find the first packet in the
assigned block, because the last packet record in the previous block might be
stored across two continuous HDFS blocks. However, it is not easy to pinpoint
the position of the first packet in a block without searching records sequentially
due to variable packet size without boundary character of each packet record.
Hence, how to identify the boundary of a split from distributed blocks is a main
concern of MapReduce tasks for packet processing. That is, the map task has to
know the starting position and ending position of splits with only partial frag-
ments of the trace files. Thus, we employ a heuristic to find the first packet of
each block by searching a timestamp field included in the packet, assuming that
the timestamps of two continuous packets stored in the libpcap trace file will not
be much different. The threshold of timestamp difference might be configured to
consider the characteristics of packet traces on various link speeds.
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The libpcap packet header consists of four kinds of byte arrays: timestamp of
seconds, timestamp of microseconds, captured length, and wired length. captured
length is the number of octets of a packet saved in the file and wired length is the
actual length of a packet record flowed into. Our heuristic to find the first/last
packet records needs two input timestamp parameters, which limits a permissible
range of timestamp for each packet.

Using these values, we perform a sliding-window pattern matching algorithm
with the candidate timestamp field on the block. Figure 3 illustrates this method.
First, PcapVlenRecordReader takes in a sample byte window of 2 × the maxi-
mum packet length from the beginning portion of the block. To find the beginning
point of the split, we suppose that first four bytes consist of the timestamp of
the first packet. According to pcap header format, another four bytes later, it
might be followed by four bytes of captured length and wired length fields. This
assumption let us know that the next packet is followed by the length of bytes
as noticed in captured length of the first packet. Thus, we can extract its header
information for validation.

To validate the assumption that the first four-byte field represents a times-
tamp of the first packet in an assigned block, we conduct three intuitive verifi-
cation procedures. First, we make sure that the first timestamp and the second
one are within the time duration for capturing packets given by user. Second, we
examine that the gap between captured length and wired length of each packet
is smaller than the maximum packet length. Third, we investigate that the gap
between the first timestamp and the second one is less than δ time, which might
be acceptable as an elapsed time for two consecutive packets. We set this value
as 60 by default. PcapVlenRecordReader repeats this pattern matching function
by moving a single byte until it finds the position that meets these conditions.

An extracted record is a byte array that contains the binary-formed packet in-
formation and it is passed to the map task as a key-value pair of the
LongWritable byte offset of the file and a BytesWritable byte array of a packet
record. Through experiments of a large data set, we confirmed that this practical
heuristic works well and the performance is affordable at the same time.

BinaryInputFormat and BinaryOutputFormat. The PcapInputFormat
module in the modified Hadoop manages libpcap files in a binary format. The
Packet Analyzer generates basic statistics such as the total IPv4 byte count
or packet count. Besides, it also computes periodic statistics results such as
bit rate, packet rate, or flow rate for a fixed-length of a time interval. To
create these statistics, we have to produce flows from raw packets. In Fig. 2,
PcapInputFormat is used for the first MapReduce job as a carrier of variable
length of packet records from packet trace files. After flows are formulated at the
first MapReduce job, they are stored to HDFS through the BinaryOutputFormat
in the fixed-length of byte arrays. To calculate the statistics of these flows, we
deliver flows to the next MapReduce job with BinaryInputFormat.

BinaryInputFormat and BinaryOutputFormat need one parameter, the size
of the record to read. In the case of the periodic flow statistics computation job,
the input parameter will be the size of a flow record. BinaryInputFormat parses
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a flow record of a byte array, and passes it to the map task as a key-value pair
of a LongWritable byte offset of the file and a BytesWritable byte array of
a flow record. Likewise, BinaryOutputFormat saves the record consisting of a
BytesWritable key and a BytesWritable value produced by the job to HDFS.
Our new binary input/output formats could enhance the speed of loading the
libpcap packet trace files on HDFS, and reading/writing packet records in the
binary file format in HDFS.

3.3 Packet Analyzer

For the Packet Analyzer, we have developed four MapReduce analysis com-
mands.

Total traffic statistics. First, we compute the total traffic statistics such as
byte/packet/flow counts for IPv4/v6/nonIP. As shown in Fig. 4, the first MapRe-
duce job calculates the total traffic information. In order to count the number
of unique IP addresses and ports, we need another MapReduce job. For this
purpose, the first job emits a new key-value pair consisting of a key combined
with the text name and an IP address, and a value of 1. This key will be used
for identifying unique IP address or port records. The second job summarizes
the number of unique IP addresses and ports.

Periodic flow statistics. Periodically, we often assess each flow information
consisting of 5-tuples of IP addresses and ports from packet trace files. For flow
analysis, we have implemented two MapReduce jobs for periodic flow statistics
and aggregated flow information, respectively. As shown in Fig. 5, the first job
computes the basic statistics for each flow during the time interval. Then, the
second job will aggregate the same flows lasting longer than the small time
interval into a single flow. Thus, the first job emits a new key-value pair for
the aggregated flows. The key consists of the 5-tuple text concatenated by the
masked timestamp.

Periodic simple statistics. A simple statistics is to tally the total byte/packet
and bit/packet rate per each interval, which could be implemented with a single
MapReduce job. During the map phase, a simple statistics job classifies packets
as non-ip, IPv4, and IPv6, and creates a new key with timestamp. The timestamp
for the new key is masked by the interval value to produce periodic statistics.

Top N statistics. Given traffic traces, we are interested in finding the most
popular statistics such as top 10 flow information. The Top N module makes
full use of MapReduce features to solve this purpose. We create a new key of
the record for identifying or grouping records within the map phase. Thus, in
the reduce phase, all the records hashed by keys become sorted by the build-
in MapReduce sorting function. Therefore, the reduce task just emits specified
number of record data. Figure 6 shows the process for computing top N informa-
tion. The input could be the results of periodic simple statistics job or periodic
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Fig. 4. Total traffic statistics (total byte/packet/flow count per IPv4/v6/non-IP and
the number of unique IP addresses/ports): two MapReduce jobs are necessary to count
the number of hosts and ports

flow statistics job. Thus, the Top N module will add one more MapReduce job.
The Top N module requires two parameters: one is the column name to sort and
the other is the number, N , to output. The column name can be byte count,
packet count, and flow count. At the map task, the column is used for creating
a new key which will be used for sorting in the running shuffle and sort phase
by reduce task. The reduce task just emits records from top to Nth.

4 Experiments

For experiments, we have setup standard and high-performance Hadoop testbeds
in our laboratory (Table 1). A standard Hadoop testbed consists of a master
node and four slave nodes. Each node has quad-core 2.83 GHz CPU, 4 GB
memory, and 1.5 TB hard disk. All Hadoop nodes are connected with 1 Gbps
Ethernet cards. For the comprehensive test with large files, we configured a
high-performance testbed of 10 slave nodes that have octo-core 2.93 GHz In-
tel i7 CPU, 16 GB memory, 1 TB hard disk, and 1 Gbps Ethernet card. We
used Hadoop 0.20.3 version with the HDFS block size of 64 MB. The replication
factor of standard/high-performance testbeds is two/three. For comparing our



60 Y. Lee, W. Kang, and Y. Lee

if non-IP then return;
create flow key
combined with masked 
timestamp with interval;
emit 1;

emit 2
(count sum per flow)

2. ({5tuple|timestamp&mask}, 
{σ packetcount}
|{σ bytecount}
|{flowcount=11})

emit 3
(create new key with timestamp 

except 5-tuple)

emit 4
(generate 

periodic flow statistics)

3. ({timestamp&mask}, 
{σ packetcount}
|{σ bytecount}
|{flowcount=1})

Job1:
• emit flow key 
combined
with 5tuple and 

timestamp&mask
for periodic statistics

•summarize # of
byte/packet count
per flow

Job2:
•summarize # of 
byte/packet/flow count
per aggregated flows 
for periodic statistics

Map1

Reduce1

Reduce2

Map2

1.({5tuple|timestamp&mask},
{packetcount=1}
|{bytecount}
|{flowcount=0})

4. ({timestamp&mask}, 
{σ σ packetcount}
|{σ σ bytecount}
|{σ flowcount})

Packet  trace byte/packet/flow count
per aggregated flows 
for periodic statistics

time interval

Fig. 5. Periodic flow statistics (flow statistics regarding byte/packet/flow counts per
time window): two MapReduce jobs are necessary to perform the aggregated flow statis-
tics

tool with CoralReef, we also have configured a single node that has the same
hardware specification with a node of the standard Hadoop testbed. Table 2
shows datasets we used for our experiments. We performed experiments with
various amount of datasets from 10, 100, 200, and 400 GB.

Table 1. P 3 testbed

Type Nodes CPU Memory Hard Disk
Single CoralReef node 1 2.83 GHz (Quad-core) 4 GB 1.5 TB

Standard Hadoop Testbed 5 2.83 GHz (Quad-core) 4 GB 1.5 TB
High-performance Hadoop Testbed 10 2.93 GHz (Octo-core) 16 GB 1 TB

4.1 Scalability

For the scalability test, we ran total traffic statistics and periodic simple statistics
jobs under various file sizes. In order to know the impacts of Hadoop resources
on performance, we executed P 3 on two Hadoop testbeds of standard 4 nodes
and high-performance 10 nodes. For the comparison, we measured the compu-
tation time of CoralReef on the standard node. Figure 7 depicts the average
computing time for the total traffic statistics (total byte/packet/flow count per
IPv4/IPv6/non-IP and the number of unique IP addresses/ports) when the file
size varies from 10 to 400 GB. We observed that job completion time is directly
proportional to the data volume to be processed by tools. Overall, P 3 on 10
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Fig. 6. Top N statistics: the top N number of records of periodic flow statistics or
periodic simple statistics

Table 2. Test packet trace files

Type # of packet files # of packets
10 GB 1 9.4 M
100 GB 1 92.7 M
200 GB 2 185.4 M
400 GB 7 441.1 M

high-performance Hadoop nodes (P 3(H, 10)) shows the better performance than
CoralReef as well as P 3 on four standard Hadoop workers, P 3(S, 4). It is shown
that P 3(S, 4) does not much improve the performance than CoralReef, because
the packet processing MapReduce job spends its time in reading/writing data
with disk I/O’s more than in performing the computation task. However, in case
of high-performance 10 worker nodes, P 3 outperforms CoralReef. In 200/400 GB
data, P 3(H, 10) completes the job 6.2 (5.8) × faster than CoralReef.

Next, we conducted an experiment with the periodic simple statistics com-
mand. In Fig. 8, it is seen that P 3 on 10 Hadoop nodes (P 3(H, 10)) finishes
the computation job faster than CoralReef and P 3(S, 4). In 200/400 GB, com-
pared with CoralReef, P 3(H, 10) achieved 7.5 (7.3) × performance improvement.
Though the speed-up ratio is the maximum at 200 GB, we could still reduce the
computation time at 400 GB with P 3(H, 10). From the experiments, it is seen
that resource-proportional computing could be possible for a large data input
with P 3.

4.2 Observation

From the experiments, we could find an interesting observation that Hadoop
is especially useful for computing-intensive jobs. We compared the total traf-
fic statistics and periodic flow statistics commands. The total traffic statistics
command is more complex than the periodic flow statistics command, because
it calculates 14 different analysis items. Therefore, we first expected that the
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Table 3. Comparison of total traffic statistics and periodic flow statistics tools under
400 GB

Total Traffic Statistics Periodic Flow Statistics
# of MapReduce jobs 2 2
# of statistics items 14 2
# of intermediate records by map 3,961 M 441 M
# of intermediate bytes by map 122 GB 16 GB
Completion time (sec) 939 798

performance of the flow statistics command is much better than the total traffic
statistic command. However, given the same input data of 400 GB, the comple-
tion time of the total traffic statistics command is longer than that of the flow
statistics command only by 18%, even though that job emits 9 × more inter-
mediate records from the map phase as shown in Table 3. This result implies
that packet processing and analyzing jobs are I/O-intensive and I/O processing
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from/to HDFS is the bottleneck of the performance. Therefore, we have to inte-
grate multiple computation jobs together while reducing I/O times in order to
develop high-performance traffic analysis applications in MapReduce.

5 Conclusion

We have presented a scalable Hadoop-based parallel packet processor that could
analyze large packet trace files. Compared to the conventional packet tools such
as tcpdump or CoralReef, our proposal could easily manage large packet trace
files of tera- or petabytes, because we have employed the MapReduce platform
for parallel processing. In addition, due to the distributed filesystem, HDFS, we
could provide the fault tolerance to our traffic analysis system. For packet analy-
sis, we designed representative statistics computation modules with MapReduce.
From the experiments, we have shown that our tool outperforms a typical traf-
fic analysis method running on a single server. For the future work, we plan to
optimize the performance of MapReduce jobs, to extend P 3 for real-time packet
analysis under high-speed links and to enhance the pattern matching algorithm
for parsing packet records.
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Abstract. IPv6 is being deployed but many Internet Service Providers
have not implemented its support yet. Most of the end users have IPv6
ready computers but their network doesn’t support native IPv6 connec-
tion so they are forced to use transition mechanisms to transport IPv6
packets through IPv4 network. We do not know, what kind of traffic is
inside of these tunnels, which services are used and if the traffic does not
bypass security policy. This paper proposes an approach, how to moni-
tor IPv6 tunnels even on high-speed networks. The proposed approach
allows to monitor traffic on 10 Gbps links, because it supports hardware-
accelerated packet distribution on multi-core processors. A system based
on the proposed approach is deployed at the CESNET2 network, which
is the largest academic network in the Czech Republic. This paper also
presents several statistics about tunneled traffic on the CESNET2 back-
bone links.

Keywords: IPv6, Teredo, ISATAP, 6to4, network monitoring, IPv6 tun-
nel, IPFIX, FlowMon.

1 Introduction

End users have nowadays IPv6 ready computers, because support for this proto-
col is available in main operating systems (Windows, Linux, BSD, Mac OS X).
Unfortunately, not every ISP has implemented IPv6 support yet, which together
with IPv6 backward incompatibility with IPv4 protocol requires transition mech-
anisms. 6to4, Teredo and ISATAP are the most used transition techniques. These
three methods use encapsulation of IPv6 protocol inside IPv4 protocol – tun-
neling. The encapsulation hides the IPv6 traffic. Tunneled traffic may look like
ordinary IPv4 traffic using UDP ports, so administrators do not know, which
IPv6 network service is requested, how much traffic flows through tunnels etc.
IPv6 tunnels are created automatically so there is no need for a user interven-
tion. This can cause security problems such as bypassing firewalls, unauthorized
use of services etc.

We propose an approach how to overcome this limitation and how to monitor
tunneled IPv6 traffic. It features hardware-accelerated packet distribution with
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which it is possible to monitor even 10Gbps links. Statistics and tunneled traffic
distribution presented in this paper are generated from IPFIX data collected on
CESNET2 backbone links, which is the largest academic network in the Czech
Republic.

The paper is organized as follows. Section 2 describes related work. IPv6
transition techniques are described in Section 3. Proposal of architecture for
monitoring tunneled data is in Section 4. Section 5 shows several statistics and
analysis from network monitoring and Conclusion is in Section 6.

2 State-of-the-Art and Contribution

Several papers discuss and present IPv6 address and traffic analysis. Authors
in [4] analyze traffic from a US Tier-1 ISP. Analyzed traffic in their data-set
consists mainly of DNS and ICMP packets. They believe that it is because
ISP’s customers consider IPv6 traffic still as experimental. For IPv6 address
assignment they used methodology introduced in [5]. Statistics from a China
Tier-1 ISP are presented in [3]. Their observation about address assignment
and application usage are similar to ours with some exceptions. Their traffic
contains higher proportion of native IPv6 traffic. We believe, that it is due to
larger expansion of IPv6 in China and Asia.

Unfortunately analysis of tunneled IPv6 traffic is missing in many papers.
Some statistics are presented in [4] but just for Teredo traffic. Paper [6] observes
IPv6 traffic on 6to4 relay but it is quite old. Despite our best efforts we did
not find publications about tunneled IPv6 traffic in ISATAP tunnels. Statistics
about 6to4 tunnels or Teredo are not so detailed and up to date. This paper
tries to update knowledge about nowadays native and tunneled IPv6 traffic.

Contribution of this paper consists of several parts. First, we propose an
approach, how to extend IPFIX to provide possibility to monitor tunneled IPv6
traffic. This approach is scalable and can be used in very large networks for
monitoring IPv4, native IPv6 and tunneled IPv6 traffic. It is possible to use
our concept to collect traffic on high-speed 10Gbps links with no need to use
packet sampling. Second, we present several statistics for tunneling mechanisms.
Deployment of IPv6 protocol accelerates because new operating systems use
this protocol by default. Therefore more services are accessible through IPv6
protocol and traffic distribution is nowadays completely different than before.
Hence current statistics are very useful.

3 Transition Techniques

IPv6 connectivity is enabled and preferred in most operating systems by default.
If a station is connected to local IPv4 network without native IPv6 connectiv-
ity and web site or another network service is accessible through both protocols,
IPv6 has precedence and a host tries to communicate through this protocol first.
Because IPv6 is not compatible with the previous IPv4 protocol, different types
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of transition techniques were proposed. The most interesting are tunneling tech-
niques, because we do not know, which protocols and services are used inside the
tunnels. 6to4, Teredo and ISATAP are todays most used tunneling mechanisms
for connection to IPv6 network.

6to4 tunneling is the most used transition technique today. According to pri-
ority in operating system, if a network device has public IPv4 address, 6to4 is
the first mechanism to be used. A host construct 64 bits long IPv6 network
prefix according to rules described in [8]. Last 64 bits are used as EUI (End
Unit Identifier). Several techniques can be used to create the identifier: based on
EUI-64, manual assignment or randomly generated [2]. Default configuration in
Windows or Linux use well-known EUI values in practice. Linux use the value
1 by default and Windows XP, Vista, 7 use IPv4 address in lower 32 bits of the
EUI [12]. When sending packets, the 6to4 tunnel wraps an IPv6 datagram into
an IPv4 datagram with protocol number 41.

Teredo was designed to be able to send network traffic through NAT [7]. It does
not encapsulate IPv6 packet in protocol 41 but send it via UDP packet on default
port 3544. Teredo address is more complicated then 6to4 and consists of Teredo
prefix, Teredo server address, flags, port and client’s external address. When
simple encapsulation is used only the IPv6 packet is carried as the payload of an
UDP packet. Server may insert other fields such as Origin and Authentication.

ISATAP – Intra-Site Automatic Tunnel Addressing Protocol is an IPv6 tran-
sition mechanism used in local networks to connect islands of IPv6 nodes over
IPv4 networks. Connection to the Internet is made by another mechanism such
as 6to4. ISATAP like 6to4 uses encapsulation in protocol number 41 [9]. Nowa-
days ISATAP is usually the last used transition techniques. Transition techniques
order which a host tries when does not have native IPv6 connectivity is usually
6to4, Teredo, ISATAP.

4 Architecture and Implementation

The proposed approach for tunneled IPv6 traffic monitoring describes whole
process of IP flow generation, export and collection. The flows are generated by
FlowMon exporter a software probe which is able to export NetFlow and IPFIX
data. The FlowMon exporter is able to generate flow statistics from any source
if the input plug-in supports it [1].

4.1 Architecture

The proposed approach consist of three layers (see Figure 1). The first layer
can be a network card or a more specialized hardware. Purpose of this layer is
capturing packets and sending them over the software interface to the input plug-
in. We used the FPGA based COMBOv2 card and libsze2 library as a software
interface. We developed FPGA design for COMBOv2 cards HANIC (Hardware-
Accelerated Network Interface Card) which provides a high precision timestamp
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Fig. 1. System architecture – packets are captured by the COMBOv2 card and can be
distributed to 16 FlowMon exporters with loaded input plug-in. IP flows are generated
based on processed packets and later exported in IPFIX format.

generated for each packet. Packets can be distributed to several DMA (Direct
Memory Access) channels. Packet distribution is one of benefits of proposed
approach and is described in Section 4.2.

The second layer reads packets from the software interface and processes them
with the FlowMon exporter [1]. We designed and implemented input plug-in for
monitoring of IPv6 tunneled traffic but plug-ins can have any other functionality.

The plug-in for tunneled IPv6 traffic monitoring detects packets, which are
part of tunnels, using a defined set of rules. After tunnel is detected, IPv4 header
is stripped out and packets are processed by IPv6 header parser. Relevant in-
formation from packet are stored to a data structure representing a part of flow
(in this case flow containing single packet). This filled data structure is passed
to the exporter. More about plug-in functionality can be found in Section 4.3.
The exporter generates flow statistics based on data structures from the input
plug-in. Flow statistics are exported in IPFIX using custom IPFIX templates
with enterprise-specific information elements to carry information about the
tunnel.

The third and last layer is the IPFIX collector.

4.2 Packet Distribution

Packet distribution is implemented using the HANIC design. The goal is to
distribute packets between several instances of the FlowMon exporter on the
hardware level.

The HANIC design provides a packet header parser. The parser can extract
necessary fields for flow identification. The output of parsing unit is a sequence
of bits with fixed length of 301 bits. This sequence is then passed to the HASH
unit which computes CRC hash with length of log2(number of channels). Each
packet is send to one of channels according to its hash (the hash is used to
address a channel).

Current version of the design use hash length of four bits. This allows to
distribute packets to 16 instances of the FlowMon exporter without breaking
the flow cache. Another advantage is possibility to process packets on multiple
processors which greatly improves overall performance.
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4.3 Plug-In Implementation

The input plug-in is implemented as shared library for Linux. It filters and
preprocess each packet to data structure compatible with the FlowMon exporter
plug-in API. The input plug-in reads packets from the COMBOv2 card in a
form of memory chunks. These memory chunks consist of whole packet together
with high precision timestamp and card’s interface identifier from which packet
was read. Protocol number is extracted from Ethernet header or from the MPLS
label if MPLS is used.

All IPv4 packets are processed by the filters to detect presence of tunnel-
ing. Detection supports the following tunneling mechanisms: Teredo, 6to4 and
ISATAP. If Teredo encapsulation is found and encapsulated IPv6 address is in
format which is specified in [7], plug-in sets type of tunnel to indicate usage of
Teredo and pass filled data structure to exporter. Detection of ISATAP and 6to4
packets is similar as they share some characteristics. IPv4 protocol must be set
to value 41. In both mechanisms IPv4 header is followed by IPv6 header. To
decide if IPv6 packet is encapsulated by ISATAP or 6to4 plug-in checks IPv6
addresses and looks for address in format specified for 6to4 or ISATAP. Filled
data structure is passed to the FlowMon exporter.

4.4 Packet Processing Performance

Packet processing performance was measured as a throughput test when pro-
cessing packets from 10Gbps Ethernet link (see Figure 2). The measurement
run on 2.0GHz quad-core CPU and beside throughput we also monitored CPU
usage (see Figure 3). Throughput was measured for Teredo and 6to4 packets
(throughput of ISATAP packets is the same as throughput of 6to4 packets). In
first scenario all packets were processed by single instance of the FlowMon ex-
porter with loaded input plug-in. In the second scenario packets were distributed
to 4 instances of the FlowMon exporter with loaded input plug-in. Each instance
of the FlowMon exporter was running on different CPU core providing more
computing power for processing.
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To minimize impact of flow generation on performance results all packets in
the first scenario originated from single flow. In case of the second scenario four
different flows were used.

5 Monitoring of Real Network

We deployed monitoring system based on the proposed approach on the CES-
NET2 network. Three 10Gbps backbone links which are connecting the CES-
NET2 network to SANET (Slovak academic network), PIONIER (Polish optical
Internet) and NIX.CZ (Neutral Internet eXchange of not only Czech Republic)
networks were monitored. We were forced to slightly change the IPFIX templates
in way they shouldn’t be according to the IPFIX standard as we were using mod-
ified NfSen. NfSen doesn’t have full support for enterprise-specific elements [13].
The presented statistics are from September 24 to October 6, 2010.

5.1 IPv6 Address Assignment

Address assignment is a little bit different in IPv6 networks. Usually stateless
auto-configuration is used [11], so a host learns just network prefix and default
gateway. The lower part of IPv6 address (last 64 bits) is a host identifier and
can be assigned manually, based on EUI-64 algorithm or generated randomly
according [2]. We use similar methodology for address classification as in [5] but
some addresses are analyzed in detail.

Table 1. IPv6 unique addresses – average per day

Traffic Unique Addresses Note

Native IPv6 8059 (10.1%) details in Table 3
6to4 20090 (25.3%) details in Table 2
Teredo 51330 (64.5%) detected 13 Teredo servers
ISATAP 82 (0.1%)

Table 2. 6to4 addresses in detail

Native Tunneled Traffic

Autoconf 2.7% 1.4%
Linux 1.2% 0.3%
Windows 91.2% 85.6%
Privacy 4.9% 12.7%

Table 3. Global IPv6 addresses in detail

Native Tunneled Traffic

Autoconf 9% 4.2%
Privacy 69.2% 69%
Low 21.8% 26.8%

Table 1 shows average number of unique IPv6 addresses in native, 6to4, Teredo
and ISATAP traffic per day. Surprisingly there is very high number of Teredo
addresses. Further examinations showed that Teredo is used mainly for p2p
sharing. We believe that it is because BitTorrent clients such as µTorrent have
implemented Teredo support, to be able to share data with more peers. We
detected several Teredo servers as well.
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Native and 6to4 addresses are more analyzed and results are shown in Table 2
and Table 3. First table describes in detail 6to4 addresses in native and tunneled
traffic. Autoconf means, that EUI is generated according to EUI-64. Linux and
Windows rows describes, how many hosts use Windows and Linux/Unix oper-
ating systems. This detection is based on default values for the EUI fields [12].
Privacy means, that EUI is generated according to Privacy Extensions. The sec-
ond table shows address structure of global IPv6 address in native and tunneled
traffic.

5.2 Tunneled Traffic Characteristics

The first interesting fact about IPv6 tunneled traffic is, according to our mea-
surement, that it generates more traffic then native IPv6 traffic. This fact is
true for all of three metrics (by flow, by packets and by bytes) and is shown in
Table 4. As described earlier, the reason for this can be presence of tunneling
mechanisms in recent versions of MS Windows.

Majority of IPv6 tunneled traffic uses Teredo mechanism (see Table 5). The
least used mechanism is ISATAP that may be given by the fact that it is the
least preferred option of tunneling in MS Windows.

Table 4. Traffic distribution

Flows Packets Bytes

IPv4 98.39% 99.19% 99.13%
Native IPv6 0.10% 0.12% 0.21%
Tunneled IPv6 1.50% 0.69% 0.66%

Table 5. Tunnel distribution

Flows Packets Bytes

Teredo 88.18% 89.10% 88.85%
ISATAP 0.06% 0.03% 0.03%
6to4 11.76% 11.76% 11.12%

We also observed very different distribution of application protocols in tun-
neled IPv6 traffic. The most used protocol in IPv4 and IPv6 traffic is HTTP. In
tunneled IPv6 traffic its share was very small and the traffic was overall spread
to hundreds of UDP and TCP ports with high numbers. We come to conclusion
that tunneled IPv6 especially Teredo is used for p2p sharing. Reasons, why p2p
programs use Teredo are described in Section 5.1.

Table 6. Protocol distribution in tunneled and native traffic

Flows Packets Bytes

IPv4 IPv6 Tunnel IPv4 IPv6 Tunnel IPv4 IPv6 Tunnel

HTTP 38.25% 1.99% 0.35% 49.99% 65.50% 2.98% 56.80% 76.16% 0.38%
HTTPS 3.26% <0.01% 0.08% 1.72% <0.01% 2.85% 1.17% <0.01% 0.33%
DNS 10.39% 61.76% 0.45% 0.45% 1.68% 0.05% 0.07% 0.42% 0.01%

6 Conclusion

Current flow-based traffic monitoring techniques can not easily analyze tun-
neled traffic. It is especially problem in IPv6 networks. In IPv6 networks tunnels
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are created automatically, without users or administrators intervention. Because
IPv6 protocol is not compatible with current IPv4, these tunneling mechanisms
would be needed for several years. Network administrators will need an approach,
which is able to monitor tunneled traffic on high-speed networks, is scalable and
can be integrated into current monitoring systems. In this paper we propose such
an approach.

Monitoring 10Gbps links is possible using hardware-accelerated network cards.
We implemented a plug-in for the FlowMon exporter, which can monitor tun-
neled IPv6 traffic and export obtained data using IPFIX. Collected data can
be further analyzed by IDS (Intrusion Detection System) and IPS (Intrusion
Prevention System). Current monitoring software miss information about the
tunneled traffic. We propose an approach which is able to monitor this kind of
traffic. We successfully deployed the proposed solution on academic backbone
links in the Czech Republic.
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Abstract. We present a novel method for identifying Skype clients and
supernodes on a network using only flow data, based upon the detection
of certain Skype control traffic. Flow-level identification allows long-term
retrospective studies of Skype traffic as well as studies of Skype traffic
on much larger scale networks than existing packet-based approaches.
We use this method to identify Skype hosts and connection events to
the network in a historical flow data set containing 182 full days of data
over the six years from 2004 to 2009, in order to explore the evolution
of the Skype network in general and a large observed portion thereof
in particular. This represents, to the best of our knowledge, the first
long-term retrospective analysis of the behavior of the Skype network
based solely on flow data, and the first successful application of a Skype
detection algorithm to flow data collected from a production network.

1 Introduction

In the last few years the Internet conferencing and instant messaging application
Skype has become a key method of communication among users on the Inter-
net. The proprietary nature of its algorithms and protocols and its extensive use
of encryption make Skype traffic identification a challenging task. Traffic iden-
tification serves two broad purposes: the identification of nodes using Skype,
and long-term retrospective analysis of the network-level behavior of a useful
application whose protocol specifications are unpublished.

Unlike other VoIP applications, Skype uses a peer-to-peer overlay network for
communication among Skype clients, and uses “supernodes” for message relay-
ing and handling metadata such as user profile and presence information. Skype
clients that are accessible from the open Internet (i.e., not NATted or firewalled)
with adequate bandwidth and resources may be promoted to supernode status.
Thus, Skype does not own most of the infrastructure of its network, itself pro-
viding only a relatively small set of “bootstrap” supernodes, gateways to the
public switched telephone network, and a login server for identity management.
Bootstrap supernodes are contacted only when a client is newly installed, and
even the login server does not need to be contacted at each login, as clients may
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use a supernode to relay login information. This architecture has allowed Skype
to rapidly grow its network while minimizing its need to build out infrastructure.

Research on Skype has to date focused on techniques working with packet-level
data, including payload. A flow, however, typically represents a set of packets
sharing the same IP addresses, ports, and protocol; or one side of an exchange
between two IP sockets. Flow data contains only this flow key, timestamps, and
byte and packet counters. This represents a significant data reduction over packet
traces for the same traffic. For many large-scale networks flow data is all that is
available, or practical to collect.

In this paper, we build on existing work in packet-level Skype traffic classifi-
cation to develop a novel method for determining the presence of Skype clients
and supernodes on a network using only flow data, based upon the detection
of certain Skype control traffic. We then apply this approach to the historical
study of Skype traffic over six years in an existing flow data set collected from
a medium-sized national-scale network. The use of flow data enables an exami-
nation of a much larger observed portion of the Skype network than in previous
works.

The remainder of this paper is organized as follows: we first review related
works in section 2. In section 3 we elaborate on the specific features of Skype
signaling traffic that lend themselves to flow-based analysis, then provide details
of the algorithm which enables that analysis. Section 4 evaluates our approach,
against a proxy identification method for Skype traffic in flow data, active de-
tection of Skype nodes, and an existing packet-based Skype detector. We then
apply our algorithm in Section 5 to the examination of long-term trends in a
very large network dataset covering the six years from 2004 to 2009.

2 Related Work

Research on Skype traffic classification and characterization has been an area
of interest for some time, but has to date been focused largely on packet-level
traffic measurements. Initial work focused on reverse engineering. In [3], the
authors give a detailed overview of Skype architecture and functionality; and in
[4] the authors examine the application from a network administrator’s view-
point. Control traffic classification at the packet level is detailed in [8] over a
five-month period on a small network. Full classification follows in [6], which
presents a real-time framework for Skype traffic detection based on two comple-
mentary techniques. The first technique is based on pattern recognition, looking
for Skype fingerprints in the packet structure. The second leverages packet ar-
rival rate and packet length statistics to feed a decision mechanism based on
naive Bayesian classification.

More recently, Rossi et al. [13] study Skype signaling mechanisms through
passive measurements and provide insights on the complexity of managing the
Skype peer–to–peer overlay network. Bonfiglio et al. [5] characterize Skype traffic
using both passive and active measurements. The authors use their classification
to investigate user behavior, as well.
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Active approaches are more suited to differential provisioning of Skype ser-
vices on operational networks. Bremler-Barr et al. [7] “harvest” supernodes by
preventing connection to them in order to enable Skype traffic filtering. Using
both experimental results and an analytic model, the authors show that it is
possible to collect enough supernode addresses so as to block the service for an
arbitrary connecting client.

The present work, however, is most directly inspired by Adami et al. [1], who
present a novel real–time algorithm for Skype traffic detection and classification
based on the combination of signature matching and a statistical approach. The
algorithm can recognize and classify some specific signaling message exchanges;
we use these features as they prove to exhibit easily recognized signatures in flow
data as well.

There have been prior attempts at flow-based Skype detection. Angevine and
Zincir-Heywood [2] use augmented flow data generated from packet data as an
input to an existing machine learning system for the purpose of detecting Skype
traffic, However, we note this mechanism requires three particular flow prop-
erties, TCP acknowledgment count and minimum and maximum flow packet
lengths, which are not supported by commonly deployed flow generators. There-
fore, this flow-based method practically requires access to original packet data,
and is not applicable to analysis on existing long-term, large-scale flow data
repositories.

3 Methodology

Our methodology draws on some of the same features of Skype traffic identified
in [1] to IP flow measurements based upon a detailed analysis of that algorithm
and the visibility of the artifacts it measures in flow data. Here we will review
the subset of features of the protocol we use for flow-level detection.

Skype uses a hybrid P2P overlay network of clients and supernodes. Super-
nodes are specialized client nodes which distribute directory and presence infor-
mation, and relay messages on behalf of the clients. They can be thought of as
the internal nodes of the network, with the clients being the leaf nodes.

Here we focus on two specific message exchanges between clients and super-
nodes which we call the UDP probe and TCP handshake.

3.1 UDP Probe and TCP Handshake

The UDP probe consists of a set of messages exchanged to discover a supernode
with which to connect to the network, and the characteristics of the connection
between the client and supernode (e.g., the presence of NATs, firewalls, etc.).
The Skype UDP probe has two forms, a long probe shown in figure 1(a)(1)
consisting of two packets in each direction, and a short probe shown in figure
1(a)(2) consisting of one packet in each direction. Either a long probe or a short
probe may be seen in connection initiation.

After the UDP probe has been completed, the client initiates a TCP hand-
shake if the size of the UDP payload of the last packet y = 18 bytes; we interpret
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Fig. 1. Packets in Skype connection interactions. Numbers represent packet payload
sizes in bytes, which are variable when not shown. Highlighted packets indicate flows
used by our approach.

these messages as supernode acknowledgements. If, however, y ∈ {26, 51, 53}
bytes, the supernode will not be further contacted by the client in this session;
we interpret these messages as negative acknowledgments. The UDP probe is re-
peated until a supernode is selected. Furthermore, the client periodically repeats
the short probe, to ensure it always has an available supernode.

The fact that each packet sent from the supernode back to the client during
a UDP probe has a known payload size makes this message exchange useful for
detection at the flow level.

Concurrently with UDP probes at network connection time, the client will
attempt TCP handshakes with any supernode that positively acknowledges the
probe to TCP port q, which is the same port number to which the UDP probe
was sent. The TCP handshake exchange is shown in figure 1(a)(3). If the TCP
handshake connection cannot be opened, the client will instead use port 80 as
shown in figure 1(a)(4), or fall back to port 443. These ports are selected as they
are less likely to be blocked; we note specifically that the Port 80 exchange does
not use HTTP.

3.2 Flow Level Detection

We illustrate the features of this exchange that are useful for flow-level Skype
detection in figure 1(b). Both the short and long UDP probes have easily rec-
ognizable signatures in flow data, and are followed relatively rapidly by the
handshake, which is attempted on one of three predictable TCP ports q, 80, 443.
Specifically, the downstream side of a long probe consists of a 2-packet UDP
flow with 85 total bytes, while the downstream side of a short probe consists of
a 1-packet UDP flow with 46 total bytes. We derive these flow sizes by adding
the size of the IP and UDP header on each packet to the sizes of the packet
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payloads in the UDP probe.1 Simply searching for this pattern in flow traffic as
shown in algorithm 1 is then sufficient to recognize Skype supernodes and clients
given a traffic stream with a high degree of fidelity.

Algorithm 1. Recognition of supernodes and clients given a set of flows
acklist⇐ ∅, supernodes⇐ ∅, clients⇐ ∅
for all f ∈ flowstream do

if protocol(f) = UDP and portdest(f) ≥ 1024 then
if 〈packets(f), bytes(f)〉 ∈ {〈1, 46〉, 〈2, 85〉} then

sn⇐ addresssource(f), q ⇐ portsource(f), cl ⇐ addressdest(f)
acklist⇐ acklist ∪ 〈sn, {q, 80, 443}, cl〉

end if
else if protocol(f) = TCP and

packets(f) ≥ 3 and
PSH ∈ flags(f) (if flags present) then

sn⇐ addressdest(f), q ⇐ portdest(f), cl ⇐ addresssource(f)
if 〈sn, sp, cl〉 ∈ acklist then

supernodes⇐ supernodes ∪ sn
clients⇐ clients ∪ cl

end if
end if

end for

In this approach we take two empirically-determined measures to reduce false
positives. First, we reject UDP traffic on well-known ports, as Skype does not in
the general case use ports lower than 1024 for supernode acknowledgement, and
because the pattern detected by this algorithm on port 53 is consistent with a
TCP answer to a UDP DNS query. Second, the acklist in algorithm 1 must also
be periodically expired; in our implementation, all acklist entries are guaranteed
a minimum lifetime of one second, as experimentation showed that the vast
majority of successful acks are answered by handshakes within one second.

Algorithm 1 recognizes client connection events at the flow level, enabling the
study of Skype traffic in data sets containing only flows2. It does not attempt
general traffic classification. It specifically ignores the data plane, or signaling
other than that at connection time.

The algorithm does have a few important limitations. Relying as it does on
UDP and TCP, it is incapable of identifying Skype client connections from net-
works where UDP is blocked or disabled at the client [14], and the client uses an
alternate handshake method; this, we suspect, is a significant component of the
1 The presence of IP options may increase the size of each of these flows in 4-byte

increments; however, in our initial evaluation of this algorithm on several days of
flow data, enabling IP option detection had no impact on the results; all handshakes
were seen after 46- or 85-byte flows.

2 Note that the examined data set is missing TCP flag data, so our evaluations do
not make use of the PSH flag check in this algorithm. Including TCP flag data may
increase detection fidelity, but we have not evaluated this case.
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real false negative rate, as we elaborate in section 4. It relies as well either on
flow traffic captured in both directions, or additional TCP flag information in the
supernode-to-client direction that would allow the identification of a successful
client-initiated TCP handshake flow. It is not adaptable to sampled flow data,
or flow data assembled from sampled packets, because it observes multi-flow
interactions and requires specific flow packet count and size data.

The development of any detection algorithm must be concerned with the pos-
sibility of evasion. In this case, the interactions we detect are fairly basic to the
operation of Skype protocol, so the properties of these interactions themselves
would need to be redefined in order to evade this detector. How easy this would
be, in a backward-compatible and realistically deployable way, is unknown. How-
ever, this possibility should be taken into account in any effort to adapt this al-
gorithm for online Skype client detection, for example, for differentiated services
purposes.

4 Evaluation

We implemented this algorithm in a detector, which we dubbed snack because
it tracks supernode (SN) positive acknowledgments (ACK) of UDP probes. We
then set about measuring its accuracy and performance. First, we ran a test
protocol containing two distinct clients, one of which starts four times, amid
web surfing, secure shell, and VPN background traffic; both clients and all five
connection events were correctly identified in each of three different trials, all
within twenty seconds of the start of the Skype application, without any false
positives.

We then sought to evaluate our algorithm against data collected from larger
networks. Here we have a problem with selecting a good proxy for ground truth.
We use three different evaluation methods, each with its own advantages and
disadvantages: passive comparison against traffic to a host known to be used
by the Skype client, verification using active Skype service discovery, and com-
parison to an existing packet-based detector. In all three of these, we focus on
the ability of snack to detect clients. The summary of these results is shown in
Table 1.

4.1 About the Observed Network

The flow data used in evaluation and exploration in this work comes from a flow
data set from the border of switch [15], the Swiss national research and educa-
tion network. switch operates a production network providing connectivity to
the Internet for universities and research laboratories across Switzerland.

This network advertises prefixes for about 2.31 million IPv4 addresses, and
the typical daily traffic volume is between 50 and 100 terabytes. The data set is
made up of hourly data files containing on the order of 200 megabytes to two
gigabytes of compressed flow data per hour. We studied one small portion of this
dataset representing four full days in February 2009 for the evaluation against
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Table 1. Results of snack evaluation on the measured network in sections 4.2, and 4.3,
and 4.4

update server eval (4.2) clients updaters c ∩ u FPmax FNmax

Su 15 Feb 2009 (24h) 1846 1811 1224 34% 32%
Mo 16 Feb 2009 (24h) 7913 7116 5648 29% 21%
Tu 17 Feb 2009 (24h) 8087 7457 5798 28% 22%
We 18 Feb 2009 (24h) 7769 7386 5513 29% 25%
mean 30% 25%
union (96h) 13323 11809 9823 26% 17%
active nmap eval (4.3) clients verified FPmax

Th 6 May 2010 (5.0h) 4008 3618 10%
packet-based eval (4.4) clientspkt clientsflow cp ∩ cf sizepkt sizeflow

Tu 6 Oct 2009 (7.5h) 17 13 13 11000 41
Tu 13 Oct 2009 (10.3h) 17 15 15 48000 100
Fr 30 Oct 2009 (34.3h) 18 16 16 46000 165

the update server in the section 4.2, one small portion of this data on one day
in May 2010 for the evaluation against active probing in the section 4.3, and
one larger portion of the dataset representing 182 full days3 of traffic in both
directions across the network border for the entire month of August for each year
from 2004 to 2009, inclusive, in section 5 to examine long-term traffic trends in
the observed portion of the Skype network.

During the period under observation in the larger dataset, the size of the
network was more or less constant in terms of routable IP space, fluctuating less
than 9%. It grew from about 2.28 million IPv4 addresses in 2004 to 2.48 million
addresses in 2006, falling slowly to 2.31 million addresses by 2009.

The measured network is an access and interconnection network for research
institutes and universities without a significant residential population, so it is
somewhat biased toward weekday, working-hour traffic. The total flow volume
exhibits a characteristic two-peak daily seasonality, with peaks around 07:00 and
12:00 UTC (09:00 and 14:00 local time), corresponding to daily activity cycles
of the connected users; we will see this pattern emerge in Skype traffic as well.

4.2 Evaluation against Update Server Activity

Skype clients periodically query an update server4 to determine whether a newer
Skype client is available for download. We assume in this evaluation that this
host is used only by Skype clients. We can therefore use the presence of traffic to
this server in the data set to evaluate worst-case false positive and false negative
rates.

We estimate an upper bound on the false negative client detection rate by
counting any host internal to the network contacting the update server within

3 2005 excludes four days of data due to a measurement system outage.
4 As of February 2009, the update server was ui.skype.com (204.9.163.158).
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a given day, but not detected as a client, as a false negative. Note that this
is only an upper bound for two important reasons. First, there is no temporal
correlation between the connection events detected by snack and update server
contact, and second, snack cannot detect internal clients contacting internal
supernodes. However, we do estimate that a non-trivial component of this false
negative rate is real, corresponding to nonmeasurement because UDP traffic is
blocked or disabled at the client.

We can also provide an upper bound on the false positive client detection rate
by counting any host inside the network detected as a client, but not contacting
the update server within a given day, as a false positive. Similar to the case
above, this is only an upper bound, as the Skype application allows the user to
disable checking with the update server [14].

Here we consider each day separately and take the mean of the false positive
and false negative rates, yielding a mean maximum false positive rate of 30% and
a mean maximum false negative rate of 25%. When considering the union of each
address set over the four days, these rates go down to 26% and 17% respectively.
This reflects the general lack of temporal correlation between connection and
update.

4.3 Bounding False Positives: Active Supernode Identification

The widely-used network scanning tool nmap supports active Skype detection, as
described in [11]. In this evaluation, we took addresses of Skype nodes from snack
fed these to nmap for verification. This evaluation has two important limitations.
First, it can only provide a false positive rate (detected by snack but not nmap).
Second, due to delays inherent in the data collection and distribution system, a
maximum of four hours pass between the snack Skype detection and the nmap
probe. We presume that supernodes are relatively more stable than the average
host, and will have longer uptimes, which should minimize the impact of this
delay. We attempt to control for host shutdown by ensuring the host responds to
ICMP echo requests (pings), but this method is itself imperfect: first, not every
host will respond to pings, or may be behind an ICMP-blocking firewall. Second,
this method cannot control for application shutdown or dynamic addressing
changes. Therefore, we can only provide an upper bound on false positive rate
as in section 4.2.

We ran this evaluation over five hours during the workday on May 6, 2010.
We fed a sample of 14149 detected Skype nodes to nmap. Of these, 4008 were
up at the time of the nmap probe, 3618 of which were positively identified as
Skype nodes. This translates to a maximum false positive rate of less than 10%,
significantly better than that indicated by the evaluation based on update server
contact.

4.4 Comparison to Existing Packet-Based Approach

In this subsection, we compare the performance of snack to that of the packet-
based detector developed by Adami et al. [1]. This comparison was done on
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packet data collected during October 2009 from a small network, in this case
a single 100Mbit link of a small local cable provider which is not part of the
network described in section 4.1. This link provides Internet access to about 30
small businesses and about 70 residential users representing a range of different
local network topologies (e.g. NATted, firewalled, and directly connected client
machines) and client operating systems. This makes it necessary for Skype to
adapt its connection process to the various conditions.

We then generated flows from the packets using YAF [9]. As shown in the
size solumns in table 1, the original packet traces were between about 200 and
500 times larger than resulting flow files, illustrating the data reduction typical
of flow-based processing.

The flow files were then given to snack, and the packet files to the Skype
detector detailed in [1]. Here, note that if we treat the packet-based detector as
ground truth, on this network snack has a false positive rate of zero; i.e., every
client detected by snack is also detected by the packed-based detector. The false
negative rate is between 11% and 23%, within the bounds but lower than the
maximum false negative rate detected in section 4.2. Manual inspection shows
that at least half the difference between the packet-based detector and snack
can be accounted for due to the inability of snack to detect connection events
in the absence of UDP traffic during association.

We note that, even factoring in the time required to generate flows from
the packet trace, snack significantly outperforms the packet-based approach,
requiring about seven minutes (434s) to find clients in the first (7.5h on Tuesday
6 October) trace, as opposed to three and a half hours (12423s), for a speedup
factor of about 30.

4.5 A Note on Performance

snack is quite lightweight, and intended to be integrated into existing large-scale
flow processing workflows for retrospective and on-line analysis. The analysis for
this study could easily be run in “real time” on a national scale network: as an
example, during the run of the study in section 5, snack processed 101 gigabytes
of compressed flow data in export order5, covering 10800 minutes (one full week)
and containing 230793 connection events, in 670 minutes.

However, the key performance benefit of flow-based analysis is the data re-
duction achievable with flow data. The data set described in section 4.1 would
require on the order of 10 terabytes, 100 terabytes, or one petabyte of stor-
age per month to support analyses on packet header, partial packets (128 bytes
of payload) or full packets, respectively. Long-term full packet storage of this
magnitude is neither technically nor legally feasible. Indeed, it is the multiple-
orders-of-magnitude improvement over packet data in storage efficiency and the
reduced privacy impact that makes large-scale network studies and operational
measurement such as this one practical, and the primary reason we sought a
flow-based method for Skype detection.
5 Our flow data set is stored as exported by the router; therefore, performance figures

here include the time required to reorder the flows by end time as required by snack.
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(b) Supernode count by hour, August 2004
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(c) Supernode count by hour, August 2006
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(d) Supernode count by hour, August 2009

Fig. 2. Growth of the Skype network

5 Insights on the Skype Network

As noted in section 4.1, we ran snack over a flow data set from the border
of switch. We explored trends over time in the development of the observed
portion of the Skype network, using the number of distinct supernodes seen per
hour as a proxy measurement for the size of the Skype network.

This measurement shows strong weekly and daily seasonality, which is to be
expected given that the number of observed supernodes correlates to human
communication activity; therefore, in the remainder of this section we will ex-
amine quartiles6 of hourly data sets as opposed to raw time series.

5.1 Network Size

In figure 2(a), we show the observed supernode counts for weekends, weeknights
(16:00-05:59 UTC), and weekdays (06:00-15:59 UTC) in August in each of the
measured years7. The median observed daytime network size increases rapidly
6 Quartile plots in this section show the 5th, 25th, 50th, 75th, and 95th percentile

measurement of each examined variable.
7 2007 data excludes data during the 16 August Skype outage. See [12] for more.
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to 2006 as Skype grows more popular, then continues increasing more slowly
thereafter, with another smaller peak in 2009.

The increase in the size of the Skype network during the day well outpaces
the increase in the size of the switch network mentioned in section 4.1.

In comparison, observed night and weekend network size remain relatively
constant. This may derive from the relatively light weekend and overnight traffic
on the observed network, but we nevertheless interpret this finding to mean
that the observed portion of the network has a minimum base size; as clients
disconnect from the network at the end of the day, the Skype network maintains
a certain number of supernodes. The network then adapts above this base to
cope with client load.

In more detail, from 2004 (in figure 2(b)) to 2006 (in figure 2(c)), the median
peak hourly size of the network increases from about 600 to about 1400 distinct
supernodes; then to about 1850 through the stabilization phase in 2009 (in figure
2(d)). From 2006, the daily pattern shows two distinct peaks at 07:00 and 12:00
UTC (09:00 and 14:00 UTC+2, Central European Summer Time, which is the
local time on the observed network). As noted in section 4.1, this pattern is
a characteristic of all traffic on this particular network, and we interpret it to
represent two distinct peaks in human activity split by a mid-day break.

5.2 In-Degree of Supernodes

We then examined the number of distinct clients connecting per supernode per
hour, which allows us to estimate the “in-degree” of supernodes. For in-degree
measurement, we focus only on supernodes internal to the network8, as we assume
that the fact that the external network is much larger than the internal network
implies that the number of clients per supernode is approximately as measured.

Here, in figure 3(a), we see a long-term downward trend from a median in-
degree of 15.1 in 2004 to 7.13 in 2007, raising slightly to 9.33 in 2009. Note too
that the shape of the distribution changes after 2007, with the 75th and 95th
percentile numbers rising from 10.3 to 18.0 and 18.4 to 25.3 respectively. This
indicates better balancing of the client load among supernodes throughout the
stabilization phase, as there are more higher-degree supernodes in later years
than in earlier years.

We examine supernode degree in more detail by measuring per hour in August
2009, shown in figure 3(b). Note that at high-traffic times during the working day,
the number of supernodes per client is relatively low, with a median between six
and seven. As clients and supernodes begin shutting down at the end of the day,
external clients must make do with fewer available supernodes; the number of
clients per supernode then peaks in the evening, with fewer supernodes (generally
on well-connected office networks) serving more home users (generally on less-
well-connected residential networks). As with the size of the observed network,
weekend and overnight traffic are similar; on weekends, the median number of
clients per supernode hovers around twenty.
8 Approximately one fifth to one third of all supernodes observed, on an hourly basis,

are internal to the network.
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Fig. 4. Trends in Skype network maturity

5.3 Network Maturity

In order to further explore the stabilization of the network, we searched for
metrics that can be used to estimate the stability of the observed portion of
the Skype network. Here we can use the proportion of connections detected by
snack on a given day involving a supernode that has already been seen that
day as a proxy for supernode stability. Here we see a long-term upward trend
in figure 4(a). On a median day in 2009, 94.6% of client connections are to a
known supernode, as opposed to 82.6% in 2004.

Another proxy for network maturity is its geographic performance. To a first
approximation, network distance is related to geographic distance; an overlay
network such as Skype is therefore performing well when the traffic of the ob-
served portion of the network is biased toward the locality in which it is meas-
ured. In figure 4(b) we show the cumulative geographic distribution of clients
external to the observed network, i.e. those which contact supernodes within the
network, by the country code associated to IPv4 address by the MaxMind GeoIP
database [10], in kilometers distant of each country centroid from the observed
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network in 2004, 2006, and 2009. Indeed, here we see a marked increase in lo-
cality between 2006 and 2009. Specifically, the proportion of client connections
within 2000 kilometers of the observed network, roughly corresponding to the
European continent, rises from 63.4% in 2004 to 71.6% in 2006 to 89.6% in 2009.
Note also that two large steps in the 2004 and 2006 distributions around 7500
kilometers, corresponding to large numbers of clients in China and the United
States, are not present in the 2009 distribution.

We also compare each client distribution with the distribution of external
IP addresses for all complete TCP flows on a typical day in 2004 and again in
2009. The proportion of external flows within 2000 kilometers is only 48.2% in
2004, falling to 40.9% in 2009. Skype client connections, therefore, demonstrate
considerably better locality than all traffic in general, even as early as 2004, and
even as the background traffic becomes more geographically diffuse.

6 Conclusions and Future Work

In this work, we have developed and evaluated snack, a flow-level Skype peer
detector, by adapting existing work on packet-level reverse engineering of the
Skype protocol to flow analysis. This represents, to the best of our knowledge,
the first Skype peer detector that operates solely on flow-level data. Significantly,
this approach scales to much larger networks than packet-based approaches. We
then leveraged this new system to develop insights on the Skype network over a
six-year time period from retrospective analysis of a flow-data archive collected
from the edge of a national-scale backbone network; this is also the largest such
portion of the Skype overlay network to be passively observed in the literature.

We believe the general approach we used in this work demonstrates the impact
that packet-level reverse engineering efforts can have on flow-level network traffic
analysis, as well as the ability of flow-level analysis to extend the scalability and
applicability of features observed at the packet level.

Obvious future directions for the algorithm developed in this work include
its application to other similar large-scale flow data repositories. In applications
where simply knowing a given address is a Skype client or supernode at a given
point in time is enough, the algorithm can be applied directly for operational
Skype traffic detection, extending the ability to detect Skype peers to those
networks with only flow data available. In cases where more detailed Skype
traffic characterization is necessary, the identification of peers provided by our
algorithm can be used as a “hint” to a second stage analysis; building such a
multistage traffic detector is another area for future work.
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Abstract. The heart of skype services, one of the most ubiquitous P2P
networks, is based on a set of super nodes. Choosing stable SNs is an
important task, since it improves the whole performance and quality of
the P2P network [1, 2]. In this paper we shed light on the life cycle of
SNs using extensive data sets on Skype Super nodes, which were gathered
over a period of 3 months. We then suggest how to choose a more stable
SNs set.

The dynamic of nodes is inherent to the use of a computer, which
is unplugged for some time or is mobile. Hence it is natural to predict
that a Super Node would have multiple sessions correlated with the time
the computer is up. Surprisingly, we show that 40% of the Super Nodes
have only one session, with median residual life time of 1.75 days. These
nodes also have a significantly shorter lifespan than Super Nodes that
have multiple sessions, which have median residual life time of 67.5 days.
We propose and give evidence that nodes with one session are nodes
with dynamic IP addresses, and hence they have ended their life cycle
due to a change of IP address. We show that the nodes with multiple
sessions are mostly nodes with static IPs, and that choosing super nodes
with static IPs would increase the availability and stability of the P2P
network significantly.

1 Introduction

In P2P network that uses Super Nodes (SNs), choosing stable SNs is an impor-
tant task, since the super nodes serve as the control tier for all the P2P nodes.
The dynamic nature of P2P networks, where there are consistent changes in the
set of nodes that participate in the p2p service, poses a huge challenge: designing
a reliable service, while the core of the service is based on dynamic set of super
nodes. By choosing stable Super Nodes, the whole performance and quality of
the P2P network can be improved [1, 2].

Our paper sheds new light on the dynamic nature of SNs. We have collected
an extensive data set of SNs from the ubiquitous P2P network, Skype. In a
short period of time of 15 minutes we have collected 10,000 active SNs and
followed their life cycles over a a long period of 3 months. We show that the
SNs enjoy longevity: median residual life of 22.7 days and with median session
length of 3 days, where a session of a node is a consecutive time that a node
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is up. Surprisingly, we show that high percentage (40%) of the SNs has only
one session. Inspired by this fact, we classify the SNs into two groups accord-
ing to the number of sessions they have during their life time: Single Session
in Life Time (SSLT) SNs group and Multiple Sessions in Life Time (MSLT)
SNs group. We measure different parameters (life time, session length and avail-
ability) on the two groups, and found out that the nodes in the MSLT are
more stable: with median residual life length of 67.5 days, while the SNs in
the SSLT have median residual life of 1.75 days. Moreover we show that if we
choose nodes only from the group of MSLT the P2P system would be more
stable and have a lower churn (less by 19%) and higher accessability (higher
by factor 2.1). We then show that SSLT is primarily composed from dynamic
IP addresses. A dynamic IP address, changes its IP address from time to time
(usually after it disconnects from its ISP). From the P2P point of view, an SN
that changes its IP no longer exists in the P2P network and it is considered
as a new SN node. The MSLT is primarily composed from SNs with static IP
addresses, which are usually servers or part of academic networks and due to
their primarily job need to be up most of the time and hence they are more
stable.

While the dynamic nature of P2P network was extensively researched in many
papers [2–8] our paper reveals new findings due to several reasons: the research
is on super nodes and not on the regular peer nodes; we check the stability of
the SNs over long time period; we measure Skype and not file transfer applica-
tions. Those differences may explain the main reason why the role of dynamic
IPs was left in the shade until now. Most of the previous papers concentrate
on file transfer p2p applications such as Gnutella, BitTorrent and Kad where
the dynamic nature of nodes is more likely due to user activities such as shut-
ting down the application after completing the task of downloading the file.
And indeed, measurements on these networks observe sessions with length of
a couple of hours [8]. However, in Skype usually the application is on all the
time the computer is on (see Section 3), hence the dynamic of nodes is due to
a network event, such as disconnecting the computer from the network. And
indeed we measure median session duration of a couple of days. Moreover we
measure subsets of the skype clients, the Super Nodes, which have relatively
long lifes and the effect of the dynamic IP address which occurs in long time
scale is shown. Note that those nodes were nominated by Skype to be Super
Nodes. Even though the code of the Skype application is confidential and un-
known, it is reasonable to assume that Skype tries to nominate peers that are
more stables to be super nodes. The only previous paper that concentrated on
Skype SN measurements by Guha et al.[9] did not concentrate on the stabil-
ity of SNs, moreover its data was not suitable for measuring and understand-
ing stability. That paper [9] checked only Super-Nodes that were alive after
a period of 3 months from the time they were collected. Note that using our
measurement we discover that only 20-30% of the SNs are still alive after 3
months.
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One important conclusion from our work is a simple guideline of how to choose
Super-Nodes. The previous technique[7], focuses on algorithms that take as input
the history of the Super-Nodes. We show, that a key impact of stability of
the super-Nodes is its IP address type. Super-nodes from static IP addresses
have greater chance of remaining alive for a long period of time in the network,
and hence should be preferred. While classifying the type of address (static or
dynamic) using the IP address alone is a hard task, this is an easy task to the
P2P client application, which can observe all the outgoing traffic and can detect
the constant change in IP addresses and thus can conclude the type of the IP
address.

2 The Model

In this section we model our P2P network, a partially centralized architecture[10]
(i.e., P2P with SNs). The model suits the Skype P2P system model, but also suits
other P2P networks with super nodes such as Kazaa[11], joost[12], iMesh[13],
Morpheus[14]. The model is also applicable to fully distributed P2P networks,
where we can consider each client as an SN.

The participating nodes in our P2P system are divided into two categories:
Super-Nodes (SNs) and ordinary clients. The Super-Nodes create the control
level, and basically are regular clients with good network connections that the
P2P network decided to nominate to be SNs. Clients request control services1

only through the super nodes. Each client maintains a list that contains a subset
of the SNs, and when it wishes to connect the P2P network it picks one of the
SNs in its list. Roughly speaking if none of the SNs in the list are active then
the client cannot connect to the service. This is not completely accurate, since
there are usually also bootstrapping servers that are located in the premises
of the company that handles the P2P service. However, the P2P cannot rely
on these servers due to the fact that these known servers are vulnerable to
filtering attempts (the incentive of filtering P2P traffic is discussed in Section
5). Moreover the scalability of the P2P network is based on the fact that most
of the clients are connect to the SNs and not to the main servers. A Super-Node
is defined according to its IP and Port. At any given time an SN is in one of the
following states: up (available) or down (fail). Nodes fail and recover according
to some unknown process. A session of an SN is the continuous period of time
the node is up.

We assume that the client’s SN list is continuously updated with the “up”
SNs as long as the client is connected to the P2P network. In the next section we
show that our experiments with Skype clients reveal that this is the case with
Skype.
1 Such as connections to the P2P network, querying the P2P network on the IP of the

callee and so on. After finding the IP address of the callee the caller communicates
directly with the callee and initiates the call. If the client is unable to communicate
directly with another client, then the SNs can also relay all communication, thus
effectively bypassing firewalls.



On the Stability of Skype Super Nodes 89

3 Experiment Methodology

In spite of its massive popularity, little is known about Skype’s inner-workings.
Skype is a closed-source application and consequently, Skype Ltd. does not dis-
close its protocols and architecture. Extensive studies [9, 10, 15–24] were con-
ducted to disclose the Skype architecture, protocols and inner-workings by using
reverse engineering and measurement techniques. The precise algorithm of how
Skype chooses which clients to nominate to SN and which SNs would serve a
specific client is unknown.

In this paper we use the fact that in Skype versions 2-2.5 each Skype client
holds a list of up to 200 SNs and their connection ports in a specific XML
file (%appdata%\Skype\shared.xml). This SN list is not encrypted in those
versions, while in later versions Skype encrypts the SN list.

Our first goal is to measure the changes in the SN list of a regular client. In
Figure 1 we measure the changes in the SN list over time. We took a snapshot
of the list at time t0 and then at each time unit ti we calculate the percentage
of SNs that did not change and appeared also in the original SN list at time
t0. We repeated the test on 100 Skype clients and for duration of 2000 minutes.
Figure 1 (see line labeled “SN List Regular Updates”) shows that the SN list is
updated constantly and that after 2000 minutes, which is a little less than a day
and half, only 64% of the original SNs still appear in the SN list. On average
Skype client received an update every 20-30 minutes.

Motivated by the fact that the SN list is constantly changing, our next step
is to measure the dynamics of SNs, specifically the on and off time of the SNs.
We first collected a set of SNs from multiple clients at the same time. In this
process, named by us SN extraction, we extract SNs at higher rate by repeatedly
doing the following on a Skype client: 1. Extracting the SN addresses and ports
from the XML file; 2. Flushing most of the SN addresses from the list - leaving
only specific SNs 3. Restarting the Skype client and waiting until the list is
refreshed with 200 SN addresses. Each such iteration, takes approximately 2-
2.5 minutes. By implementing the described process at the same time on 20
computers, located at ETH and Israel, we gathered 10,000 SNs with unique IPs
in less than 15 minutes.

The SN extraction process is a modification of the method used by Guha [9],
designed to work at a faster rate. We estimate that we gathered a snapshot of
around 20% of the active set of SNs since the common estimation is that there
are around 45K active SNs at any give time [25]. Figure 1 (see line labeled “SN
List Extraction”) shows the percentage of SNs that also exist in the SN list at
time ti that appeared also in the original SN list at time t0. After 2000 minutes,
the percentage is negligible and is only 2.5%. Thus, the flushing phase at the SN
extraction causes Skype to send almost entire new SN list.

In order to check the status of an SN (i.e., if the SN is up or down) we
use a Skype application ping, i.e., we send to the SN the first UDP packet of
the Skype login process (similar technique to [9]). We checked the 10,000 SNs,
every 15 minutes, where in each such iteration, we pinged all the 10,000 SNs
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Fig. 1. The percentage of SNs at SN list at time t that appeared at the original SN
list at time 0 in two scenarios: regular updates from Skype network and SN extraction

twice and waited for up to 5 minutes for the answer. An SN is considered to
be up in iteration i if there was a response to at least one of the two pings in
that iteration, otherwise the SN is considered down at iteration i. A session is
defined as consecutive iterations where the SN is up. The SN life time is defined
as the time elapsed between the start of the first session until the end of the
last session.2 We note that we verified that the Skype application ping is a good
indicator of the fact that the client is still SN and is still alive. For dozens of
SNs, we checked and verified that if the Skype application ping indicates that
the SN is up, then we are able to connect to skype using this SN solely.3

Overall we did experiments over three months beginning on Apr 3. 2009. Our
infrastructure was very stable and we conducted more than 9,000 iterations, and
experienced connectivity problems only in 10 iterations. The stability and the
large data set overcomes the known pitfalls in measuring the stability of SNs [8].

We note that there is a high correlation between the time the SN is up and
the time the corresponding computer is up (and vise versa). Thus there is a
good indication that usually the skype client is by default open at the client
computer. We think that this is because the skype client is always on in order to
be on standby to receive calls. The way we verified that a computer is on is by
sending an ICMP ping to the computer. While most computers do not response
at all to ICMP ping, since the ICMP is filtered in the host network for security
reasons, a small subset of the SNs (17%) do respond to ICMP. We concentrated
on this group and found that in those computers there is a decisive correlation
between the responsiveness to the Skype application ping to the responsiveness
to a regular ICMP ping (and vise versa).

2 In order to avoid noises due to packet loss, we decided that a session ended only
if at least in three consecutive iterations the SN was down. We found out that the
results are not sensitive to this threshold.

3 This was done by modifying the SN list at a client to hold only the examined SN
and by filtering into the firewall any default hard coded skype servers.
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Fig. 2. (a) CDF of the absolute availability percentage of SNs. (b) Histogram of number
of sessions in the residual life time of SNs.

4 Availability and Life Cycle of SNs

In this section we shed light on the life cycle of SNs. Naturally, a P2P system
wishes to choose SNs that are available most of the time. We start by checking the
absolute availability of SN, which is defined as the time the SN is up during
the test. Figure 2(a) shows the absolute availability of SNs and surprisingly
the percentage of absolute availability is low: 50% of the SNs are available less
than 18% of the test time, i.e. less than 16 days. In order to understand this
low absolute availability we start to analyze the life of SNs. Due to the test
methodology we can not measure the life time of SNs but only the residual life
time (recall that those SNs were already alive for unknown time when we start
to measure their activity). Our first step is to understand the number of sessions
an SN has during its life. Figure 2(b) shows the histogram of the number of
sessions in the residual life of SNs. It is obvious that the number of SNs with
only one session seems to be an exceptionally large number of 40%.

Motivated by this fact, and in order to further understand the behavior of SNs
we define two groups of SNs: 1. The Multiple Sessions in Life Time (MSLT)
SNs group - the group of SNs that have more than one session in their residual
life time 2. Correspondingly, the Single Session in Life Time (SSLT) SNs group -
the group of SNs that have exactly one session in their residual life time.4

Figure 3(a) shows the CDF of residual life time. One obvious outcome is that
SNs that have only one session, have a very short residual life time. The median
of residual life time at the SSLT group is 1.75 while the median of residual
life time at the MSLT group is 67.5 days. SNs that were still alive when the
experiment was ended (after 90 days) are clearly from the MSLT group: 38%
of the MSLT SNs as opposed to 2.1% of the SSLT group. In the first 15 days
the number of SNs that died permanently is the highest, and most of them are
4 We note that our definition of an SN session refers only to sessions which were made

by the SN while holding the same IP+port.
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Fig. 3. (a) CDF of the residual life time. (b) CDF of the availability during life time
of SNs.

from the SSLT group. From the graph shapes, it seems that the two groups have
entirely different behavior, while the SSLT graph has exponential reduction in
the first 15 days, the MSLT graph shows a steady linear reduction in all the test
experiment period.

With this understanding we revisit the absolute availability definition and
define new parameter the availability during life to be the percentage of time
a node is available during its residual life time. Figure 3(b) shows that 90% of
the nodes were available more than 37% of their life time. Note that, the SNs
that were available 100% during their residual life, had only one session, i.e.,
they belongs to the SSLT group. Hence, we can now understand that the low
measure of absolute availability of SN was mostly due to SNs that disappear
permanently from the system, and not due to nodes that alternately leave and
join the network.
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Fig. 4. (a) CDF of residual length of the first session. (b) CDF of downtime.
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Motivated to understand the life cycle of the SNs we continue and analyze the
length of the residual session length and down time between sessions (which is
naturally applicable only for the MSLT group). One may predict that the length
of the session will be similar between the two groups: i.e., that the MSLT SNs
would have multiple sessions but the length of the session would be the same.
Figure 4(a), analyzes the first session residual length, and shows that this is not
the case: the SSLT has also shortest residual session length of 1.75 days in the
median as opposed of 4.35 days median for the MSLT group. We explain this
phenomenon in Section 6 after discussing the roots of those two groups. Figure
4(b) shows that the down time is relatively low to the session time; where the
median of downtime is 0.8 days while the median of residual session length is 3
days (for all SNs) and 4.35 for the SNs in the MSLT group.

5 Churn and Accessibility of the P2P System

In this section, we discuss the impact of the life cycle of SNs on the system
stability. We also show the impact on the stability if we would choose SNs only
from SSLT group or only from MSLT group.

The accessibility of the P2P system - This is a new metric we suggest
(somewhat similar to the group availability parameter of [8]). Motivation wise,
this parameter correlates to the ability of a client that has an SN list which
is T time old to access the P2P network using one of the live SNs on its list.
Specifically, let us take a snapshot of the M active SNs of the P2P system at
time t0, the accessibility at time T of the set M is the percentage of the M SNs
that are up also at time t0 + T . Hence, if a client has a list of SNs with K SNs
which were obtained T time ago, and the accessibility of the P2P system after
T time is p, then the probability that a client can connect to the P2P system is
1 − (1 − p)K . Using this definition if an SN fails (sometime before time T) and
then recovers at time T, the SN is useable as a node that never failed.

The accessibility parameter quantifies the ability of a client to access the P2P
network with an old SN list. The lower accessibility value the higher the rate
which the P2P system needs to update the SN list to ensure that the client can
connect the network.

We assume that the P2P system cannot rely on bootstrapping servers (if they
exist), that are in the premises of the P2P company, since they are fixed and
known and hence vulnerable to blocking attempts of the P2P services. There
are various reasons to block P2P systems. In the case of a P2P worm [26], such
as STORM, the motivation of blocking the attempt is clearly to mitigate the
spread of the worm. In order to design resilient worm, the accessability to the
SNs that appear in the infected message should be high also after a long time
(since in some cases a long time might elapse between the infection by the worm
to the actual time the worm executes).

Legitime P2P services, are also in danger of being filtered, especially at enter-
prizes, that are concerned with data leak using encrypted P2P services that offer
file transfers (such as Skype). Without being drawn into the legality aspects, an
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Fig. 5. (a) Accessibility of the SNs as function of time. (b) CDF of the residual life
time of Static and Dynamic SNs.

ISP may wish to control the traffic of P2P services since the traffic consumes the
ISP bandwidth. An ISP may also wish to filter or limit the rate of P2P services
that compete with services offered by the ISP; for example, Skype may compete
with ISP VoIP services.

In Figure 5(a) we show the percentage of accessibility to P2P network as a
function of time elapsed from the beginning of our experiment. After 90 days
of the test, the MSLT group has 38% accessibility, the SSLT group has ac-
cessability of 2.1% and the group of all the SNs has accessibility of 18%. I.e.,
choosing SNs only from the MSLT group would increase the acceptability by
factor of 2.1. Note that there is no straightforward correlation between the ac-
cessibility of the system after T time and the life span and availability of the
SN. Since if all the SNs had an availability of 50% and had a life span of 90
days it might still be that the accessibility of the system will be zero at fifty
percentage of the time. In fact this can happen if all the SNs are correlated
and in the same time zone: e.g, all of them are unavailable during the night.
However, as Figure 5(a) shows this is not the case, and the graph shows only
small waves, which we found were correlating to day and night zones in the
USA. Overall the shape of the graph reassembles the graph of the residual life
time (see Figure 2(b)). An analysis of the SNs origins according to countries,
lead to the conclusion that this stability in accessibility is the direct outcome
of the fact that the SNs are distributed over the whole world and over all
time zones. We calculated the continents distribution of SNs that come from
countries that contribute more than 1% to the total SNs and we have received
that 38.24% are from North America, 29.92% from Europe and Africa, 16.02%
from Asia and 15.82% that we did not classify. Hence we can conclude that
the continent distribution of SNs, guarantees that there is a high chance that a
Skype client will be able to connect to the network even if it was not alive for
weeks.
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The churn of a P2P system - Motivation wise the churn measures the
number of times an SN goes down and we need to replace the SN. Specifically,
we assume for simplicity that the system maintains a fixed number of SNs, M
SNs. The assumption is that when an SN fails, the system picks another one
to replace it. In this definition when a node fails and then recovers, from the
system’s perspective the node is like a new fresh node. We define churn as the
number of SN turnovers (where turnover is when SN went down and another
node was assigned to replace it) over a period of time T divided by M . For
example, a churn of 2 per day means that on average the identity of each SN
is replaced twice a day. Churn significantly influences the stability of a P2P
system. An SN that goes down, requires the system to transfer all its functions
to another SN. For example, in Skype, if the SN relays calls, all the calls need
to be transferred to another SN.

We can estimate the Churn rate from the first session length. Recalling that
churn is defined as the number of times we replaced an SN in order to maintain
a fixed number of live SNs. Hence, when the session ends, we need to replace the
SN with a new one. Let X be the random variable of the first session length. Then
we can estimate the churn as T/E(X), where T is a given time unit. However,
note that we measured in our experiment the residual first session length (as
presented in Figure 4(a)), and not the actual first session length, since we start
to measure the nodes at some random time of their life. Let Xr be the random
variable of the residual life of the first session, then E(Xr) = E(X ∗ Y ) where
Y is a random variable that indicates a percentage of the session time that has
already elapsed when we start to measure the node. We use here a simplified
assumption that Y is uniformly distributed and hence E(X) = 2E(Xr)5. Using
this calculation we receive that the group of SSLT suffers from high churn of 0.35
turnovers per day compares to the group of MSLT with churn 0.22 turnovers
per day. I.e., the SSLT churn is 1.66 higher than the MSLT churn. Moreover the
churn of all the SNs group is 0.27, which means that choosing SNs only from the
MSLT group will reduce the churn by 19%.

6 Dynamic Addresses and the Correlation to SSLT
Group

Until now we have shown that there is a huge difference between the character-
istics of SSLT and MSLT SNs (see summary of result at Table 1). We have also
shown that if we choose the SNs only from the MSLT group it would improve the
Churn and Accessibility of the P2P system dramatically. In this section we ex-
plain why these groups, SSLT and MSLT, are so different, and what the rational
behind this partition into these two groups is.

We believe that the difference between SSLT and MSLT is inherent and it is
related to the fact that some of the SNs belong to dynamic IP networks (usually
5 Due to the paradox of residual life [27]- this calculation is not entirely accurate

however using a more complicated and accurate calculation would not change sig-
nificantly the result.



96 A. Bremler-Barr and R. Goldschmidt

Table 1. Summary of the different characteristics of SSLT and MSLT SNs. The pa-
rameters are calculated using the 90 days of data. The residual life time, session length
numbers are the median. The system accessability is calculated after the 90 days of
the experiment.

Residual Residual first System System
life time session length Churn Accessability

Total 22.7 3 0.27 18%
MSLT 67.7 4.35 0.22 38%
SSLT 1.75 1.75 0.35 2.1%

Table 2. Classification of the SNs according to their address type (Static/Dynamic)

From All SNs Static IP SNs Dynamic IP SNs
Total 10,000 637 983
MSLT 59.7% 84.92% 38.55%
SSLT 40.3% 15.08% 61.45%
Ratio MSLT/SSLT 1.48 5.63 1/1.59

residential users connected by cable, xDSL and so on..). In this case an SN in the
SSLT group is mostly SN with a dynamic IP and hence died since the IP address
of the SN was replaced. However, there is a good chance that this SN is alive but
with a different IP address6. This can explain also the exponential reduction in
the residual life of SSLT SNs in the first days (see Figure 3(a)), since dynamic
IPs live for only a few days [28]. As opposed to SSLT group, the MSLT group is
composed from SNs with static IPs, that after leaving the network (for example
closing the computer), can return with the same IP.

In order to support our assumption, we classified the IP to Static and Dynamic
IPs using reverse DNS (rDNS, similar to the method of [28]). An rDNS maps
an IP to its host name (e.g., “ip-66-186-253-215.dynamic.eatel.net”). We classify
the IPs by searching in the returned results for keywords such as “static” and
“dynamic”. Using this method, we were able to classify 637 static IPs and 983
dynamic IPs. Note, that the rDNS technique was able only to identify only
15% of the SNs but the classification is almost 100% accurate. The SNs that
were classified using the rDNS technique are a good random sample of the SNs.
Moreover, rDNS is consider to be the most accurate technique. Other solutions,
e.g. Spamhaus are able to classify all the IPs but are known to be accurate only
70% of the time [28]. Using Spamhaus we reach a similar result.

We present at Table 2 the correlation between the classification to SSLT and
MSLT to Dynamic and Static IPs. It is clear that the vast majority, 84.92%,
of the static IP SNs belongs to the MSLT group. With dynamic IPs group the
result shows a weaker correlation with only 61.45% of dynamic IPs appeared in
the SSLT group. Hence 38.55% of the dynamic IPs belong to the MSLT group.
6 Dynamic IPs may occur also due to NAT or a cluster of proxies, however this is not

relevant to Skype SN, since an SN can not be behind a firewall or NAT [9].
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This is still a good indication that most of the dynamic IPs are from the SSLT
group, if you take into account that the ratio between the number of SNs in the
SNs group is 1.48 and for dynamic SNs group the ratio between MSLT to SSLT
is 1/1.59.

We suspect that dynamic IPs that are in the MSLT group belong to a third
group of IPs, to the “Sticky dynamic IP address” group. We believe that IPs
that belong to this group are using DHCP. In the DHCP protocol [29], the ISP
assigns its client an IP address and a lease time which determines the amount
of time that subscriber can use this IP address.7 In this period of time the client
can also disconnect from the network and return to the same IP (hence the
terminology “sticky dynamic IP address”). The lease time is usually a couple
of days, since the ISP wishes to avoid load on the DHCP server and redundant
traffic. We find support for our speculation in the fact that the Dynamic IPs
that belong to the MSLT group had an average down time between sessions
of 9 hours while static IPs that belong to MSLT had an average down time of
54 hours. We suspect that the dynamic IPs in the MSLT group had a relatively
lower down time between sessions, since “Sticky dynamic IP address” can return
to their original IP address only if the break is short and the lease time has not
elapsed.

Another support for the correlation between the MSLT/SSLT groups to static/
dynamic groups can be seen in the great similarity between the CDF graph of
residual life time of the static/dynamic groups (see Figure 5(b)) to the CDF
graph of residual life time of MSLT/SSLT groups (see Figure 3(a)).

The fact that MSLT/SSLT groups correlated to static/dynamic IP groups
can explain the different residual life time and the different accessibility between
the two groups. Dynamic IPs replace their IPs and hence live a shorter life
time. However, one may wonder why there is also a difference in the first session
length (see Figure 4(a)) which influences the Churn. Our speculation is that the
root cause is the special type of clients that maintain static IPs. Static IPs are
widely used for server applications or academic networks. Servers or academic
networks need constant IPs since they need to be constantly up and available. A
consequence of the required high availability is the relatively good infrastructure
and hence the long session. We also observe, looking at the rDNS results, that
there are a high number of university computers in the static group.

7 Conclusion and Discussion

Choosing which clients should become Super-Nodes in P2P networks is an im-
portant and crucial task for the stability of the network. As far as we know we
are the first paper that shows the impact of choosing static IPs on the different
aspects of network stability. The high stability of static IP is due to two reasons:
the fact that the static IP does not change the IP address, and the fact that
computer which is connected through a static IP connection is relatively more
stable, since the computer is usually used as a server. The fact that static IPs
7 During the lease time the subscriber can also renew the address lease time.
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are more stable can be used to choose stable SNs, and thus increase the stabil-
ity of the P2P network. While it is a hard task to classify the type of address
(static or dynamic) using the IP address alone, this is an easy task for the P2P
application.

Specifically, the P2P application is usually designed in such a way that the
application in the clients send from time to time keepalive messages to the central
unit of the P2P network with some identifer of the client application. Using those
keepalive messages the P2P network can detect the changes in the IP addresses
of the computer. Change of IP can be due to the roaming of the computer (incase
of laptop or smart phone device) or due to the fact that the IP address of the
computer is a dynamic IP address. A thumb rule suggests that if the change is
to another IP in the same subnetwork (usually the /24 or according to the BGP
prefixes [30]) and the change is periodically then the change is due to the fact
that this is dynamic IP [28]. Hence our paper observation on the rule of type
of address (dynamic/static) is an operative guideline to the designers of P2P
system.

Our measurements on the life cycle of SNs reveal that there is a set of nodes
which is very stable; that its session duration is a couple of days and its life span
is over 3 months (note that 38% of the nodes in the MSLT group live during
the entire experiment which was 3 months). Those nodes can be used as an
important building block in designing a more stable P2P network.
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Abstract. Privacy-preserving techniques for distributed computation have been
proposed recently as a promising framework in collaborative inter-domain net-
work monitoring. Several different approaches exist to solve such class of prob-
lems, e.g., Homomorphic Encryption (HE) and Secure Multiparty Computation
(SMC) based on Shamir’s Secret Sharing algorithm (SSS). Such techniques are
complete from a computation-theoretic perspective: given a set of private inputs,
it is possible to perform arbitrary computation tasks without revealing any of the
intermediate results. In this paper we advocate the use of “elementary” (as op-
posite to “complete“) Secure Multiparty Computation (E-SMC) procedures for
traffic monitoring. E-SMC supports only simple computations with private input
and public output, i.e., they can not handle secret input nor secret (intermediate)
output. The proposed simplification brings a dramatic reduction in complexity
and enables massive-scale implementation with acceptable delay and overhead.
Notwithstanding their simplicity, we claim that a simple additive E-SMC scheme
is sufficient to perform many computation tasks of practical relevance to collab-
orative network monitoring, such as anonymous publishing and set operations.

1 Introduction

Privacy-preserving techniques for distributed computation have been proposed recently
to support inter-domain collaborative network monitoring [1]. In the reference sce-
nario, a set of collaborating ISPs are unwilling to share local traffic data due to busi-
ness sensitivity, but they have a collective interest to perform some operation on such
data (e.g., aggregation) and share the final result. For example, they might want to ag-
gregate local traffic measurements in order to reconstruct global statistics, which are
further processed in order to unveil global threats (e.g., botnets) or discover macro-
scopic anomalies. As pointed out in [2], each ISP would benefit from comparing its
local traffic conditions with the global view aggregated over all other ISPs, especially
in the occasion of anomalies and alarms, in order to hint at whether the (unknown) root
cause is local or global. Also, ISPs might be ready to share with other ISPs information
about security incidents observed locally (e.g., intrusion alarms) provided they can do
so anonymously.

Two possible approaches to solve such class of problems are Homomorphic Encryp-
tion (HE) and Secure Multiparty Computation (SMC) based on Shamir’s Secret Sharing
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algorithm (SSS for short). Both such techniques are “complete” from a computation-
theoretic perspective (see [3] and [4]): given a set of private inputs, it is possible, in
principle, to compute any arbitrary function, including structured algorithms involv-
ing conditional statements, without revealing any of the intermediate results. In fact,
a distinguishing feature of HE and SSS is that they can operate also on secret inputs
and/or provide secret outputs (see Fig. 1(a)). The notions of secret and private are dis-
tinct: private data is known in cleartext to at least one player (and usually only to one),
while secret data remains unknown by all players and can not be reconstructed unless
a minimum number of players agree to do so. On the other hand, such techniques are
computationally expensive — especially HE — and therefore do not scale well in the
number of players and/or in the rate of computation tasks (queries).

Here we advocate the use of “elementary” (as opposite to “complete“) SMC proce-
dures for collaborative traffic monitoring. Such techniques — hereafter referred to as
E-SMC for short — support only simple computations with private inputs and public
output, i.e., they can not handle secret input nor secret (intermediate) output. We show
that such a simplification allows for an enormous reduction in computational complex-
ity and overhead, making such techniques amenable to massive-scale implementation.
Notwithstanding their simplicity, we claim that E-SMC is sufficient to perform a broad
variety of tasks of practical importance in the field of collaborative traffic monitoring. In
fact, queries can be chained to build more structured computation tasks (ref. Fig. 1(b))
whenever intermediate results, which are always public in E-SMC, are not regarded
as sensitive. Moreover, we show that an additive E-SMC scheme can be combined
with local transformations on the private data and/or with particular data structures
(e.g., Bloom Filters, bitmap strings) in order to extend the range of supported opera-
tions. Thanks to their simplicity, collaborative systems based on E-SMC are amenable
to massive-scale implementation, with very large number of players and/or very high
rate of queries.

In this initial work we take a first step towards unfolding the potential of E-SMC for
traffic monitoring. We make three main contributions. First, we present a simple scheme
for E-SMC, called GCR, which is based on additive-only or multiplicative-only secret
computation and extends an idea presented earlier in [5]. Second, we highlight some
system-design aspects of GCR that enable massive-scale implementation: in particular,
we propose to split the computation into offline randomization and online aggregation
phases. Third, we present a number of use-cases and operations relevant to collaborative
traffic monitoring and show how they can be mapped to E-SMC queries in combination
with Bloom Filters and bitmap strings.

2 The GCR Method

We consider the classical SMC scenario where a set of n players collaborate to com-
pute a function of some private data — e.g., traffic statistics, network logs, records of
security incidents. As customary in SMC, we assume a semi-honest model (also known
as honest-but-curious): all players cooperate honestly to compute the final result, but
a subset of them might collude to infer private information of other players. In other
words, no malicious player will attempt to interrupt nor corrupt the computation pro-
cess, e.g., by providing incorrect or incomplete input data.
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Fig. 1. Graphical representation of a “complete” secure procedure with secret intermediate results
(a) and a sequence of “elementary” secure operations chained by public intermediate results (b)

Hereafter we present a simple method to perform secure private addition which ex-
tends an idea presented earlier by Atallah et al. in [5, §4.1] based on additive secret
sharing. We refer to this method as “Globally-Constrained Randomization” (GCR for
short). We show also that GCR, which is simple conceptually, lends itself to massive-
scale implementation. A variation of the scheme to perform secure multiplication is
presented in the extended version of this work [6], where the interested reader can find
also a detailed comparison between SSS and GCR.

Notation. We consider a set of n ≥ 3 players {Pi, i = 1 . . . n}. The maximum number
of colluding players is denoted by l (collusion threshold) with l ≤ n − 2. For each
computation task (query) each player Pi involves the following elements:

– ai is the private input of Pi to the summation. For some queries, it is obtained
by applying a local transformation g() on some other inner private data bi, i.e.,
ai = g(bi).

– ri is the private random element which Pi has previously generated cooperatively
with other players in the way presented later.

– vi
def= ai + ri is the public input which Pi eventually announces to the other players.

The collection of random elements across all players constitutes a Random Set (RS)
and will be denoted by r def= {ri, i = 1 . . . n}. The goal of the computation round is to
obtain the public output result A

def= f(a1, a2 . . . an) = f(g(b1), g(b2), ..g(bn)) without
disclosing the values of the individual ai’s. For each computation, all input elements
(ai, ri, vi) and the output A must be in the same format, defined over the same additive
commutative group (Abelian group). We will consider the following distinct cases:

Scalars: ai, ri and A are real or integer numbers defined in the interval Rp
def= [0, p].

For the sake of simplicity we will assume p integer, but not necessarily prime. The
group operation in this case is modulo-p addition. A generic random element x is
a random value extracted uniformly in [0, p], i.e., x ∼ U(0, p). The null element is
the zero value. For integers, it is convenient to choose p = 2q with integer q so that
modulo-p addition maps to wrap-around of a q-bit counter.

Binary strings: ai, ri and A are binary strings of length k. The group operation is
therefore bitwise addition (XORing). In this context a generic random element x is
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a random string, i.e., a collection of bits set randomly to 1 or 0 independently and
with equal probabilities. The null element is a string with all ’0’s.

Arrays of counters: ai, ri and A are vectors of k elements, each element being a
q−bit counter. The group operation is an array of k parallel modulo−p additions. A
generic random element is a collection of k random values 〈x1, x2, ..xk〉 extracted
independently and uniformly in [0, p− 1]. The null element is an array of zeros.

The format of input elements ai, ri and, if applicable, the choice of the transforma-
tion function g() depend on the type of operation (query) as detailed in §3. We adopt
the symbols ‘+’ and ‘

∑
’ to refer generically to the addition between two or multiple

terms, without specifying the group operation.

Overview. The central aspect of GCR is that the RS is constructed in a way that guaran-
tees the zero-sum condition, i.e., the composition of random elements across all users
sums up to the null element, formally

∑n
i=1 ri = 0. Moreover, the generation of RS

ensures that the individual ri’s can not be inferred by other players, provided that the
number of colluding players remains below the threshold l. Each player Pi then shares
with the others (e.g., via a central collector) the sum of data plus random elements, i.e.,
vi = ai + ri, which serves as the public input to the computation. When all input el-
ements vi are collected, the value of A is obtained simply by the total sum, formally:∑n

i=1 vi =
∑n

i=1 (ai + ri) =
∑n

i=1 ai +
∑n

i=1 ri = A + 0 = A. Note that the value
of A can be reconstructed only when the inputs from all players have been collected:
it is sufficient that a single player (among those that have contributed to generate the
RS r) fails to provide its input element to block the computation of A. This is the main
disadvantage of GCR compared to SSS, as discussed more in details in [6].

Generation of Random Sets. Hereafter we describe how each generic player Pi (i =
1 . . . n) constructs its random element ri in cooperation with other players, so as to
collectively build the RS r. Note that the RS generation procedure is completely asyn-
chronous and can be run in parallel by all players. Each random element is initially
set to the null element, i.e., ri = 0. Each player Pi extracts l + 1 random variables
xi,j (j = 1 . . . l + 1) and computes their sum yi

def=
∑

j xi,j . It calculates the additive
inverse1 yi of yi and adds it to its own random element, i.e., ri ← ri + yi. At the same
time, Pi contacts l + 1 randomly selected other players and sends one variable xi,j to
each of them: each contacted player Pj will then increment its random element by xi,j ,
i.e., rj ← rj +xi,j . This method is secure against collusion of up to l players. Note that
l is a free parameter, independent from system size n, which can be tuned to trade-off
communication overhead with robustness to collusion — both scale linearly in l.

Computation phase. With GCR the computation is basically a summation over n pub-
lic inputs, the vi’s, and no particular constraint applies to the aggregation method, which
can be centralized or distributed. In other words, the GCR method is oblivious to the
adopted input aggregation scheme. For the sake of simplicity, we assume here a fully
centralized scheme, with a single master in charge of launching the query, collecting
the n public inputs, computing the result and finally publishing it to all the players.

1 In modular arithmetic the additive inverse y of y is the element that satisfies y + y = 0. For
real numbers in [0, p], y = p − y + 1, while for binary strings y = y.
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Decoupling RS generation and computation. One key advantage of GCR is that the
process of generating the RS is completely decoupled — and can be run independently
— from the actual computation round. We devise a system where lists of RS are gener-
ated offline and stored for later use. At any time, each player Pi has available a collection
of random elements ri[u], indexed in u, which can be readily used for future computa-
tion rounds. The communication protocol must ensure that the RS indexing is univocal
and synchronized across all players. During the online computation phase, the query
command broadcasted by the central master will indicate explicitly the RS index to be
used for the production of the public inputs vi’s.

Performing RS generation offline brings several advantages, especially in massive-
scale systems. First, it minimizes the query response delay down to the same value of
an equivalent cleartext summation. Second, generation of multiple RS can be batched,
meaning that in a single secure connection (typically SSL over TCP) two players i, j
can exchange multiple 〈variable,index〉 pairs {xi,j [u], u}u which collectively build a
collection of RS {r[u]}u. This reduces dramatically the communication overhead for
connection establishment (handshaking, authentication, etc.). Moreover, the RS gener-
ation process can be scheduled in periods of low network load, e.g., at night.

In GCR the set of players participating in the computation round must match exactly
the set of players that have previously built the RS. If RSs are generated offline, the
set of players might have changed between the generation of r[u] and its consumption
in a query. It would be very impractical to trash all pre-computed RSs upon every new
player joining or leaving the system — an event not infrequent if the number of players
is large. In order to ensure consistency, the legacy RS must be incrementally adjusted
upon join or leave of players, but that requires at most l + 1 operations performed by
the joining/leaving player (see [6] for additional details).

3 Advanced Operations

The GCR scheme can be used directly to perform basic additive tasks, such as aggre-
gation and counting (refer to [6, §4]). Here we show a few examples of more advanced
operations which can be mapped to additive E-SMC queries — and as such can be sup-
ported by GCR — in combination with specific constraints on the input data elements
and/or a proper local transformation function g(). For each of them we illustrate a pos-
sible application for collaborative network monitoring. This section is one of the main
contributions of the paper: to the best of our knowledge we are the first to “interpret”
the following operations as applications of SMC using the additive sharing scheme.

3.1 Set Operations

In this section, we first describe how (probabilistic) set operations can be implemented
using bloom filters with any SMC scheme that supports both, private additions and
multiplications (e.g., SSS). We then outline what subpart of that functionality can easily
be implemented with GCR.

Bloom filters (BF) are powerful data structures for representing sets [7]. A BF rep-
resenting a set S = {x1, x2, . . . , xn} of n elements is described by an array of m bits,
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initially all set to 0. The BF uses k independent hash functions h1, . . . , hk with range
1, . . . , m. For each element x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k. For check-
ing whether an element y is a member of S, we simply check whether all bits hi(y)
are set to 1. As long as the BF is not saturated, i.e., m is chosen sufficiently large to
represent all elements, the total number of non-zero buckets allows to accurately esti-
mate |S|. Counting Bloom Filters (CBF) are a generalization of BFs, which use integer
arrays instead of bit arrays. Thus, CBFs allow to represent multisets, in which each ele-
ment can be represented more than once. Note that a (C)BF allows to efficiently check
for element membership, but not to enumerate the contained elements. Compared to
state-of-the-art approaches for privacy-preserving set operations via HE (e.g., [8]), the
use of (C)BF allows for very efficient and scalable solutions.

Set Union. If each player i has a local set Si, they can construct the union of their sets
S = S1 ∪ S2∪, . . . ,∪Sn by performing private OR (∨) over their BF arrays. If inputs
are multisets, represented by CBFs, the aggregation operation is addition instead of
OR. Using CBFs, each player can learn the number of occurrences of specific elements
across all players or the number of other players that report each element (by using a
BF as input). From the aggregate CBF, one could, for instance, compute the entropy of
the empirical element distribution.

Set Intersection. In order to perform set intersection on BFs, the players simply use the
AND (∧) operation for aggregating their sets S = S1 ∩ S2∩, . . . ∩ Sn. Only buckets
set to 1 in all the players’ BFs will evaluate to 1 in the aggregate BF. In this specific
scenario, it is also possible for each player i to enumerate all elements in S simply by
iterating over all x ∈ Si and checking whether x ∈ S, since S ⊆ Si.

Set Operations with GCR. GCR directly supports the addition operation and therefore
set union on multisets. If the counts in each bucket are not sensitive, the union and inter-
section of sets can be computed from the public union of multisets — the intersection,
for instance, is given by selecting all elements with count n. However, private union
and intersection directly on sets can not be delivered by GCR. In fact, union requires
OR, i.e., a combination of addition and multiplication not supported by GCR, while the
problem with intersection is that multiplicative GCR does not include 0 (see [6]).

3.2 Anonymous Publishing

The goal is to let one player P1 publish to all other players a binary string w with-
out revealing its identity. The string w can represent, for example, a piece of malware
payload that P1 has discovered with an IDS, or the description of a security incident
which was observed locally. Moreover, w could be used as a public condition for a fu-
ture counting round, e.g., to discover how many other players have observed the same
event. There are several reasons why the publisher wants to remain anonymous. First,
knowing that it was hit by the malware might be detrimental to its reputation among
customers. Second, such information might benefit other potential attackers.

DC-nets [9] are a basic and unconditionally secure solution for anonymous publish-
ing. In the following, we devise an alternative solution that does not require pair-wise
shared secrets, and deals with the problem of detecting and/or avoiding collisions.
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Let k denote the length of string w, and denote by C(w) a Cyclic Redundancy Check
(CRC) control field of length c computed on w — the need for CRC is explained below.
It is straightforward to map an Anonymous Publishing round to a bit-wise summation
on strings of length k + c. The publisher P1 sets its data element to the concatenation
of w and C(w), i.e., a1 = 〈w, C(w)〉, while all other players set their data elements to
null (aj = 0, j �= 1). Therefore the public result will return the string w in cleartext,
i.e., A = a1 = 〈w, C(w)〉, but since the individual data elements remain unknown
the identity of the publisher is protected. Such a simple approach works only if exactly
one player publishes in the computation round: if two (or more) players P1 and P2

attempt to publish different strings, there is a collision — i.e., the computed result will
be the combination A = 〈w1 ⊕ w2, C(w1)⊕ C(w2)〉 (’⊕’ for bit-wise summation)
from which neither of the elements w1, w2 can be derived. However the collision can
be easily revealed by CRC failure as in general C(w1 + w2) �= C(w1) ⊕ C(w2). The
“collision recovery” procedure can simply foresee the repetition of new anonymous
publishing rounds associated to a back-off scheme to avoid that the same players collide
again in the next round — a mechanism conceptually equivalent to Slotted-Aloha.

A simple “detection and recovery” approach is not effective when the instantaneous
rate of publishing attempts is high — this is of particular concern in large-scale system
with many players (n >> 1) and/or in presence of correlated attempts (e.g., a spread-
ing malware payload caught simultaneously by different domains). In such cases it is
preferable to adopt a “collision prevention” method by orderly scheduling the publish-
ing rounds for different players. This can be achieved by a single round of anonymous
scheduling, as explained below.

3.3 Anonymous Scheduling

The problem is defined as follows: out of the total n players, a subset of m < n “active”
players are ready to perform a given action, e.g., anonymous publishing. The goal is to
schedule the m active players without knowing nor revealing their identities. This ap-
parently difficult task can be easily accomplished by bit-wise summation over strings of
size k >> m. At the query round, the inactive players set their data elements to the null
string, while each active player Pi extracts uniformly a random integer qi ∼ U(1, k)
and then builds its data element ai with a single ’1’ at the qi-th position and all other bits
set to ’0’. The bitmap length k must be large enough to ensure that bit-collision proba-
bility — i.e., two or more players independently picking the same random value qi —
is kept acceptably low. Assuming that no bit-collision has occurred, the final (public)
result A is a bitmap with m ’1’s and k −m ’0’s. Upon learning A, each active player
Pi checks whether the bit in the qi position is set to ’1’, and if so it counts the number
of ’1’s in the preceding positions, say µi, from which he learns it has been scheduled in
the successive (µi + 1)−th query round. If otherwise the qi-th bit is ’0’, Pi infers that a
collision has occurred and waits for the next scheduling round.

In case of bit-collisions the round does not completely fail: if collisions involves
only two (or any even number of) players, the colliding players will simply wait for
the next scheduling query. If three (or any odd number of) players have collided on the
same q−th bit, they would again collide in the q−th query round. However this is not a
serious problem as far as collisions in the query rounds can be detected and recovered
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(e.g., by CRC failure in case of Anonymous Publishing). An alternative strategy is to
preliminarily discover the exact number of active players m via a simple counting query,
and then validate the scheduling round only if the number of ’1’ equals m (see [6, §5.4]).

4 Conclusions

In this initial work we have introduced the distinction between “complete” and “ele-
mentary” SMC techniques. It was shown that an elementary additive scheme, namely
GCR, lends itself to massive-scale implementation through the separation between ran-
domization and computation phases. Despite its simplicity, GCR is sufficient to support
several common operations for collaborative inter-domain monitoring. Furthermore, it
can be combined with Bloom Filters and/or bitmap strings to handle set operations,
anonymous scheduling and anonymous publishing (e.g., of security alarms). GCR al-
lows to leverage SMC in collaborative inter-domain monitoring systems with very high
rate of queries and/or large number of players.
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Abstract. Anonymity techniques provide legitimate usage such as pri-
vacy and freedom of speech, but are also used by cyber criminals to hide
themselves. In this paper, we provide usage and geo-location analysis of
major anonymization systems, i.e., anonymous proxy servers, remailers,
JAP, I2P and Tor. Among these systems, remailers and JAP seem to have
minimal usage. We then provide a detailed analysis of Tor system by an-
alyzing traffic through two relays. Our results indicate certain countries
utilize Tor network more than others. We also analyze anonymity sys-
tems from service perspective by inspecting sources of spam e-mail and
peer-to-peer clients in recent data sets. We found that proxy servers are
used more than other anonymity techniques in both. We believe this is
due to proxies providing basic anonymity with minimal delay compared
to other systems that incur higher delays.

Keywords: Anonymizer, onion routing, Tor.

1 Introduction

Anonymizers are services that enable users of the Internet to browse the web
anonymously. They allow a user to maintain a level of privacy that prevents the
collection of identifying information such as the IP address while surfing on the
web. Anonymizers are an offspring of mix networks that use a chain of proxy
servers to create hard-to-trace communications [4]. These anonymity services
are provided by either commercial companies driven by subscription fees, non-
commercial organizations profiting from advertising, or home-brewed services
through open source anonymous tools. Community contributed systems include
The Onion Router (Tor) [6], the Invisible Internet Project (I2P) [1], and the
Java Anon Proxy (JAP) [2].

Anonymity is defined as a state in which an agent is not identifiable within an
anonymity set [12, 15, 17]. The anonymity set is a system of senders, receivers,
and servers in the communication network. Anonymity is a combination of both
unidentifiability, i.e., observers can not identify any individual agent, and unlink-
ability, i.e., observers can not link an agent to a specific message or action.
� Equally contributing authors.
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Anonymity has always been a dichotomous issue in both social life and cy-
ber space. Anonymity technologies have been used for criminal purposes as well
as legitimate purpose. On one side, anonymous technologies provide legitimate
usages such as privacy and freedom of speech, anti-censorship, anonymous tips
for law enforcement, and surveys such as evaluation and feedback. On the other
side, anonymous technologies provide protection to criminals in facilitating on-
line crimes such as spam, piracy, information and identity theft, cyber-stalking
and even organizing terrorism. Additionally, they may be utilized for Internet
abuse for bypassing the Internet use policy of an organization, exposing organi-
zation to malicious activities, abusing organization resources, and prevent web
filters from monitoring.

Anonymizer systems send data packets over randomly chosen relays so that
no single system has information about both the sender and the receiver. Since
many users use these intermediaries at the same time, the Internet connection of
any one single user is hidden among the connections of all other users. Hence, no
individual system, internal or external, can determine which connection belongs
to which user. Anonymity research remains a very active area where investigators
have focused on anonymous communication, traffic analysis, provable shuffles,
anonymous publications, private information retrieval, formal methods, commu-
nication censorship, and traffics [5, 7, 12].

In this paper, we analyzed usage of popular anonymity systems including
anonymity proxy servers, remailers, JAP mix network, I2P and Tor. For this
study, we collected the server lists of each technology and looked up the geo-
location of servers. During our exploration, we identified 1,441 anonymity proxy
servers, 15 remailers, 11 JAP mixers, 483 I2P relays, and 10,510 Tor relays.
We observed that U.S. and Germany were among the top 5 server providers for
proxy, Tor and I2P systems and additionally France and Russia were among the
top 5 for Tor and I2P systems.

We then performed a detailed analysis of Tor system, the most popular
anonymity system, by setting up two servers to analyze Tor usage. During the
experiment our servers relayed 150GB of traffic. In this experiment, we observed
that relays from Germany and U.S. contribute most bandwidth resources to Tor
system and that they have the highest number of Tor users.

Finally, we analyzed anonymity systems from service perspective by analyz-
ing spam e-mail and peer-to-peer client sources of recent data sets. In spam
data, we observed e-mails sent through commercial anonymizer services such as
GoTrusted. Moreover, we found that proxy servers are used more than other
anonymity techniques by spammers and peer-to-peer users to hide their IP ad-
dresses. We believe this is due to proxies providing basic anonymity with minimal
delay compared to other systems that incur higher delays.

In the rest of the paper, we first analyze well known deployed anonymity
systems in Section 2. In Section 3, we analyze the usage of Tor anonymity system
in depth. In Section 4, we analyze anonymity system usage in different networks.
Related work is discussed in Section 5. Finally, we provide our conclusion in
Section 6.
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2 Analysis of Anonymization Techniques

There are many categories of anonymity systems. From a usability point of view,
anonymous communication can be classified in two categories: high latency sys-
tems, mostly used by email anonymity that provide strong anonymity, and low
latency systems, mostly used by anonymous web browsing that have better per-
formance. Other categories can be based on trust level, network type, anonymity
properties, or adversary capability.

In this section, we review well-known deployed anonymity systems and provide
geographic distribution of their servers.

2.1 Proxy Server

Proxy

Fig. 1. Proxy Server

A proxy server is the easiest to deploy
anonymity system mostly used for low la-
tency browser anonymity [7]. The basic
idea behind a proxy server is that a client
uses a proxy server to surf the web as
in Figure 1. The proxy server performs
client requests using the proxy server’s
identity rather than the client’s real iden-
tity. Proxy servers relay requests from users to their destinations and deliver
responses to the users. Anonymous proxy servers hide the user’s IP address and
other identifying information to provide basic anonymity. However, these servers
are aware of both the source and the destination, and hence can trace user activ-
ities. Moreover, they have the weakest security against observers as monitoring
in and out traffic of such a proxy server provides a high level of information
about its users.

Figure 2 represents the geographic location of 1,441 public proxy servers
obtained during Oct 11-17, 2010 from proxy.org, publicproxyservers.com,
proxy4free.com, freeproxy.ru, and tech-faq.com. Note that, the figure is
logarithmic scale. Among the available public proxy servers from 88 countries,
most were located in the U.S. (i.e., 438) and in China (i.e., 250). Moreover, only
19 countries hosted more than 10 public proxy servers and 28 hosted a single
server. These proxies were collected from major announcement lists and are a
sample of available public proxy systems. Hence, this is not a complete list of
public proxy servers but a representative sample.

In addition to volunteer-based systems, several commercial anonymizer net-
works such as Anonymizer.com and GoTrusted.com provide anonymous Internet
access service to their clients. In these systems, clients pay a subscription fee to
be able to relay their traffic through servers operated by the company. Usu-
ally, the user is connected to the network through a VPN tunnel and all traffic
flows through the tunnel. However, as these companies are in charge of all the
communications, they provide a lower degree of protection to their clients.
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Fig. 2. Geographic Proxy Distribution (log-scale)

Fig. 3. Remailer
Geo-Distributions

As proxy servers provide general web communication, re-
mailers enable users to send electronic messages through
their servers so that senders can not be traced. Remail-
ers typically remove all identifying information from e-mails
before forwarding them to their destination. Known exam-
ples of remailers include Cypherpunk, Mixmaster, and nym
servers. However, due to heavy use of these servers by spam-
mers in the past, they are not actively deployed any more.
During our extensive web/blog search on Oct 2010, we were
able to identify only 15 active remailers shown in Figure 3.

2.2 Mix Network

The building block of most of the current high-latency anonymity systems is
the mix [4]. The basic building block of these systems, shown in Figure 4, is
a set of mix processes where each mix process takes ciphertext messages that
are encrypted with the mix process’s public key as inputs. Mix process groups
messages together as a batch and forwards the encrypted messages to the next
mix process at certain flush times along with dummy messages.

Messages reach their destination after being forwarded by a set of mix pro-
cesses through the network. For example in Figure 4, path P of a message M con-
sists of 3 mix process Mix-1, Mix-2, and Mix-3. The client builds ciphertext C by
encrypting message M along with random text R using each mix’s public key K.
The ciphertext (e.g., E1(AMix−2, R1+E2(AMix−3, R2+E3(D, R+M)))) specifies
the exact path the message will take through the mix network. Each mix node
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(e.g., Mix-1) receives the ciphertext decodes one layer to find next hop destina-
tion (e.g. AMix−2) and forwards payload (e.g., E2(AMix−3, R2+E3(D, R+M))).

Fig. 5. JAP Geo-
Distribution

Asymmetric encryption and the flushing algorithms are the
key for anonymity level and performance of a mix network.
As encryption algorithms are provably secure with the current
technology, flushing algorithms are an important component
that may expose identity of the users. Flushing algorithms
buffer incoming messages into a pool and forward messages in
rounds. At each round, a random subset of the pool messages
are mixed with dummy messages and flushed. The random
subset can have a constant number or a dynamic number of
messages. The duration of each round is decided based on a
threshold. The threshold can be a number of messages N in
the pool, or a timer counter T , or a combination of both.

The Java Anon Proxy (JAP) is a mix network that uses
servers provided by volunteers, usually institutions that de-
clare conformance to JAP policies, to browse the Internet [2].
JAP cascades encrypted packets through several mixes and
keeps the traffic in a constant rate to avoid rate-based traffic analysis. The JAP
program displays active mixes and users are able to select JAP cascades from
those active mixes. Figure 5 presents the geographic location distribution of 11
JAP servers that were active on 12-19 Oct 2010. Compared to onion routing
based systems Tor and I2P, JAP seems to have minimal usage at the time of our
analysis.

2.3 Onion Routing

Onion routing is a low latency anonymous communication approach and is cur-
rently considered the most prevalent anonymization system design [10]. The basic
idea of onion routing is similar to the mix system but performance is improved
by using symmetric keys for relaying messages and asymmetric keys to establish
circuits in the system.
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Directory Server

Entrance router

Exit router

Onion Proxy

Fig. 6. The Onion Router (Tor) communication

There are different variations of onion routers such as Crowds [18], Tarzan [9],
Invisible Internet Project (I2P) [1], and The Onion Router (Tor) [6] based on
how the routing servers are organized; how the encryption algorithms are applied;
how the tunnels are established; whether the transport-layer protocol uses TCP
or UPD; or whether the clients relay traffic to other clients or not.

Tor, shown in Figure 6, is the most popular design as it combines the best
parts of previous methods (e.g., the directory discovery of routing servers for
clients, telescopic circuit establishment, and hiding locations). Directory servers
are responsible for distributing signed information about known routers in the
network [7]. Authoritative directory servers, currently 7 systems trusted by Tor
developers [11], determine three-hop paths among volunteer servers using secured
TCP connections. User messages are then encrypted as in mixes and forwarded
through the established circuit to the dedicated exit router, which forwards the
message to the final destination and echoes replies back. Entrance and exit nodes
are particularly important as they know the source and the destination of the
communication, respectively. Hence, authoritative directory servers pick only a
subset of existing systems, which seems to be reliable, to become entry nodes and
protect client profiling. Moreover, packets originate from the exit system from the
destination’s perspective and may be questioned regarding user actions. Hence,
Tor allows relay systems to not become an exit node.

Figure 7 presents a snapshot of Tor servers based on their geographic loca-
tion during Oct 20-24, 2010. For this analysis, we monitored the authoritative
directory servers to determine the total number and geographical location of
Tor servers. During the sampling period, we identified 10,510 unique servers
at 95 countries but Tor system has approximately 1,500 active volunteers at a
given time. Most of Tor relays are located in few countries. Similar to earlier
studies [3, 14], Germany and U.S. had highest number of volunteers. Consider-
ing continents Europe had the highest number of servers. Interestingly, among
Asian countries, Iran was third after technologically advanced countries such as
Russia and Taiwan.
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Fig. 7. Geographic Tor Server Distribution (log-scale)

Similar to Tor, the Invisible Internet Project (I2P) offers anonymization ser-
vices that identity-sensitive applications can use. The I2P network is strictly
message based, i.e., UDP, but there are libraries that allow reliable streaming
communication on top of I2P network. Many applications can interact with I2P
including mail, peer-to-peer, and IRC chat. Different from Tor, I2P does not
focus on end-to-end delay and is preferred for peer-to-peer applications. To an-
alyze its usage, we collected active I2P relays by joining the system during Oct
11-17, 2010. Figure 8 presents the geographic distribution of 483 servers in 29
countries (origin countries were determined by performing AS look-up of server
IP addresses). Even though we had a longer sampling of I2P, we observed fewer
servers than Tor system. Moreover, similar to Tor, Germany, U.S. and France
had the highest number of volunteers.

Fig. 8. Geographic I2P Server Distribution (log-scale)
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3 Tor Usage Analysis

In this section, we analyze usage of Tor, currently the largest anonymity system.
To be able to understand Tor network traffic, we set up two Tor relays using
Tor 0.2.2.15- alpha. In order to analyze the traffic passing through our nodes, we
used Wireshark to capture packet headers, i.e., IP addresses and port numbers
for both source and destination, and payload size. During Oct 20-24, 2010, we
had approximately 150 GB of data passing through our relays. According to
the authoritative directory servers that provide bandwidth usage of each relay,
our nodes were among the most popular relays of Tor in terms of bandwidth
utilization.

Moreover, we inspected both incoming and outgoing traffic to observe whether
our nodes were entry and exit routers. We observed client IPs when our relays
were designated as entry nodes. Looking at IP addresses, we were able to identify
the system we were communicating with. If the IP was not among Tor relay
nodes, it either belonged to a user or to a server that users were communicating
with. In order to distinguish between both, we looked at the payload size as Tor
traffic is segmented into cells of 512 bytes. If the payload was 512 bytes that,
the packet belonged to a user. Otherwise, the packet belonged to a server users
were communicating with.
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Fig. 9. Tor Usage (log-scale)

As part of our study, we also identified the geographical locations of clients and
Tor relays. Table 1 and Figure 9 presents the number of Tor users and the relay
servers from these countries. During a day period, when one of our servers was
designated as an entry node, we observed 5,932 unique client IPs. According to
the usage information we observed, Germany had the highest number of clients
using Tor network and hosted most of the relays (similar to what was reported
in [14]). Moreover, we analyzed the usage ratios of observed countries. For this, we

Table 1. Geographical distribution of Tor servers and clients

Country Germany U.S. Italy China France Russia Netherlands Canada Sweden Turkey
Users 1,076 734 657 469 356 289 223 143 119 108
Servers 205 141 42 29 32 27 29 18 25 6
Usage 5.48 .92 7.28 .36 2.64 1.60 5.01 .17 4.66 1.01
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obtained the number of Internet users from http://internetworldstats.com
and estimated the percentage of Tor usage in each country. Interestingly, Italy
has the highest ratio of Tor usage relative to its Internet users.

During our data sampling, we also took snapshots of the authoritative di-
rectory servers to observe relay bandwidth. On average 1,567 Tor routers were
observed to be active. Figure 10 presents the average contribution ratios of dif-
ferent countries in terms of total bandwidth, which was computed as the sum of
all bandwidths of relays from a country.

Fig. 10. Tor Bandwidth Distribuiton

Finally, to model the probability
of each router forwarding a particular
packet, we analyzed Tor relay usage from
our nodes by counting the number of re-
lay IPs. For an hour of traffic, we ob-
served that 2% of relays carry 30% of traf-
fic. Among the 15 most popular routers,
8 were in Germany, 4 in United States,
2 in France and 1 in Sweden. This in-
dicates the disproportion of traffic car-
ried by Tor servers and may weaken user
anonymity [8].

4 Service Perspective

In this section, we investigate the usage of anonymity technology from a service
perspective. These service applications include a secure web site at a univer-
sity, spam emails, and peer-to-peer network. In total, 195,919 unique IP ad-
dresses were observed and analyzed to understand whether they originated from
an anonymity system. For this, we compared the observed IP addresss to the
collected IP addresses of anonymity servers in Section 2. Table 2 provides an
overview of all the anonymity systems we looked at. The originating countries
of these IP addresses were found using AS lookup.

Table 2. Analyzed Anonymity Systems

Network Tor I2P JAP Remailers Proxies Commercial
Servers 10,387 483 11 15 1,441 Anonymizer, GoTrusted
Service General peer-to-peer General E-mail General General

We collected the IP addresses of systems that accessed a secure web site from
log files of more than 1 year. In this data, we had more than 21K unique IP
addresses but there was no IP address from an anonymity server. This is expected
because the secure web page requires login information and use of anonymizer
would not improve anonymity of the user.

The following subsections provide our findings about spam e-mails and peer-
to-peer traffic.
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4.1 Spam Mail

Spam email data was collected using two approaches. First, we collected IP ad-
dresses of spam emails from Gmail accounts of coworkers and from departmental
email servers during Oct 2010. Second, we gathered publicly available spam email
IP addresses of recent spammers from the Internet. An important issue was to
obtain recent data sets as anonymizer server IP addresses change over the time
(except for commercial systems). As explained below, most spam e-mails were
sent through relays in China and U.S. which is consistent with [16].

Gmail data set: We collected 4,843 IP addresses of spam e-mails from Gmail
accounts of co-workers during Oct 2010. In this data, 42 IP addresses belonged to
anonymity servers corresponding to 0.87 % of spam e-mails being sent through
an anonymity network. Figure 11 presents the distribution of the anonymizer
technology and the server geo-location. In this data set, I2P was utilized as
spam relay more than the other sytems.
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Fig. 11. Gmail Spam

Departmental data set: We collected 11,402 IP addresses of e-mails that
were marked as spam by the departmental mail servers during Oct 2010. Among
these IP addresses, only 76 were identified to arrive through an anonymity net-
work corresponding to 0.67 % of total departmental spams. Figure 12 presents
the distribution of utilized anonymizer technology and the server geo-location
for departmental spam that was sent through an anonymity system. Similar to
Gmail spam data, China and U.S. were the top two. In this data set, proxies
and Tor network were utilized in sending spam e-mails.
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Public data set: We collected 30,959 IP addresses that were recently marked as
spam generators by public systems including projecthoneypot.org,ipdeny.com,
aclweb.org, landfall.net, spam-ip.com, spam-ip-list.blogspot.com, and
spamlinks.net. Among these IP addresses, 1,368 belonged to an anonymity
server corresponding to 4.42 % of all spammer IPs. Figure 13 presents the distri-
bution of utilized anonymizer technology and the server geo-location for spam-
mer IP addresses in the data set. Similar to earlier data sets, China and U.S.
were the two major relay nodes for spammers among the 31 countries observed
and account for 65.4 % of all servers. In this data set, we observed that Proxy
and Tor servers were utilized the most. Interestingly, the commercial anonmizer
system goTrusted.com was utilized by spammers to send e-mails.
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Fig. 13. Public Spam Data

All data sets: Figure 14 presents the results of all data combined (i.e., Gmail,
department and public spam email data sets). Overall, proxies, GoTrusted and
Tor were the three major sources utilized by spammers to relay e-mails. More-
over, servers in China, U.S. and Germany were the main relays of spam e-mails.
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Fig. 14. Combined Spam Data

4.2 Peer-to-Peer Data

In order to analyze peer-to-peer traffic for anonymizer technology usage, we mod-
ified the open source Shareaza client, which joins BitTorrent, eDonkey, Gnutella,
and Gnutella2 networks. The code was modified to log connected IP addresses
and automatically search 3,600 keywords that were Google trends on Oct 2010 for
about 50 countries. Considering copyright and other legal issues, the download
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feature was disabled so that no files were actually downloaded to our systems.
We gathered data from two systems during Oct 10-24, 2010. In total, 114,593
unique IP addresses of peer-to-peer users were observed and analyzed.

Shareaza data set: Among the 114,593 IP addresses observed during our data
collection, only 53 belonged to an anonymity system. Compared to the spam e-
mail data set, this was very small. We believe that the main reason for this is the
delay incurred by the anonymity system. Figure 15 presents the anonymity tech-
nology and geo-location distribution of the servers for the identified anonymizer
relays. We observed that only Proxies and Tor servers were utilized by peer-
to-peer clients to hide their IP addresses. Even though our peer-to-peer clients
were in the U.S., only servers in Brazil, France, Hong Kong and Taiwan became
relays to connect to our nodes. Among the 114,593 IP sources, United States
and China accounted for most of them, but none of those utilized an anonymity
network.
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Fig. 15. Peer-to-peer data

Finally, within two weeks of data collection, we received a high ratio of bad
queries among peer-to-peer client messages. These bad queries may be due to
encrypted or compressed messages as reported by Chaabane et al. [3].

5 Related Work

There have been many studies on anonymity and anonymous systems and three
studies have analyzed Tor usage as it gained popularity [3, 13, 14].

McCoy et al. looked for answers on how Tor is being used, how it is being
mis-used, and who are its users [14]. In their experiments, the authors analyzed
application-level protocols that use their nodes as exit node. According to their
finding, interactive protocols, such as HTTP, make up 92 % of the connections
and 58 % of bandwidth. Similarly, bit-torrent traffic consumes 40% of bandwith
even though it accounts for 3.3 % of the connections. The authors also pointed
to malicious usage of Tor routers and developed a method to detect malicious
logging at exit routers. Moreover, they indicated that Tor has a global user base
based on client distribution. Our results in Section 2 also indicate that Tor has
the largest volunteer base among anonymity systems.
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Moreover, Chaabane et al. performed a study to analyze applications that use
Tor [3]. Authors monitored traffic on six servers which were pairwise located in
U.S., Europe and Asia to inspect geo-diverse relays. Authors analyzed HTTP and
BitTorrent traffic in detail. They pointed out that BitTorent consumes significant
resources both in terms of packets and traffic size. Finally, authors pointed that
Tor servers are used as 1-hop SOCKS proxies and present a method to detect
such misuse.

Loesing et al. provided guidelines for a statistical analysis of Tor data focus-
ing on countries of connecting clients and exiting traffic by port [13]. Pointing
to privacy issues the authors derived guidelines for measuring sensitive data in
anonymity networks. Moreover, they pointed to interesting cases such as in-
crease in Tor usage by Iranian IP space in June 2009 after the Iranian elections;
Tor blocking by China and consequent increase in bridge usage by Chinese IP
addresses.

Our study is different from previous studies in that, in addition to Tor net-
work analysis, we presented the analysis of other active anonymizer systems. We
pointed out their usage and server geo-location distributions. Furthermore, we
analyzed the traffic from different networks including a secure website, spam e-
mails and peer-to-peer network. These studies allowed us to measure anonymizer
usage in different domains.

6 Conclusion

Anonymity technologies have been utilized for a while. It is important to under-
stand how people are using them, what applications are being used and which
anonymity technology is popular. In this paper, we first summarized various
anonymity technologies, i.e., proxy servers, mix networks and onion routing, and
then focused on widely deployed anonymity systems, i.e., proxy servers, remail-
ers, JAP, Tor, and I2P. For analyzing the current state of anonymizer networks,
we joined them and collected information about relay nodes. We observed that
similar countries, e.g., U.S., Germany and China, have the highest number of
servers in different anonymizer networks.

Moreover, we set up Tor nodes as clients to collect entry and exit traffic
information. Our servers relayed 150GB of data over five days. We observed
that countries with high number of servers tend to have high number of Tor
users. For instance, Germany and U.S. are top both in number of server and
number of clients. Furthermore, to understand anonymity technology usage in
different domains we analyzed spam emails and peer-to-peer clients. We observed
that proxy servers were deployed more than other technologies. We believe that
this is due to the higher latency in more secure systems.

Acknowledgments. This work was supported in part by National Institute of
Justice.
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Abstract. In this work we present and evaluate different automated com-
bination techniques for traffic classification. We consider six intelligent
combination algorithms applied to both traditional and more recent traffic
classification techniques using either packet content or statistical proper-
ties of flows. Preliminary results show that, when selecting complementary
classifiers, some combination algorithms allow a further improvement –
in terms of classification accuracy – over already well-performing stand-
alone classification techniques. Moreover, our experiments show that the
positive impact of combination is particularly significant when there are
early-classification constraints, that is, when the classification of a flow
must be obtained in its early stage (e.g. first 1 – 4 packets) in order to
perform network operations online.

1 Introduction

Traffic Classification gained a lot of attention from both the industrial and
academic research communities because of its application in several contexts:
traffic/user profiling, network provisioning and resource allocation, QoS, enforce-
ment of security policies, etc. While significant progress has been made in this
field, with development in several research directions, literature clearly shows
that there is still no perfect technique achieving 100% accuracy when applied to
the entire traffic observed on a network link [20].

Deep Packet Inspection (DPI) is still considered the most accurate approach,
but because of (i) computational complexity, (ii) privacy issues, and (iii) lack
of robustness to the increasing usage of encryption and obfuscation techniques,
it is used today as a reference (ground-truth) in order to evaluate the accuracy
of new experimental algorithms that should overcome these limitations. Most of
these algorithms are based on the application of machine-learning classification
techniques to traffic properties and, even if their accuracy never reaches 100%,
it has been shown that they typically are more resistant to obfuscation attempts
and applicable when encryption is in place [5, 30].

In [13] we proposed the implementation in a single classification platform
of combination strategies able to collect the results of very different classifica-
tion techniques. Moreover, literature in the machine-learning field and pattern
recognition [22] has produced several combination algorithms for building multi-
classifier systems able to achieve better accuracy than each stand-alone classifier
composing them.
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In this work we apply several (6) of such algorithms to the problem of traffic
classification, attempting the combination of classifiers (8) based on techniques
known in the traffic classification field and we show preliminary results obtained
from a real traffic trace. We show that in some cases it is possible to improve
the overall classification accuracy over that of the best-performing classifier.
Moreover, based on the observation that when a very limited quantity of infor-
mation on each flow is available (which translates in less discriminating features)
the accuracies of each stand-alone classifier decrease, we evaluate the improve-
ment achieved by combining them under such conditions. Results show that the
improvement is quite significant. This is important because several real-world
applications of traffic classification as, for example, QoS, traffic shaping, and
security policy enforcement, require early-classification, that is, the ability to
generate a classification response when the flow is in its early stage (e.g. after 1
– 4 packets have been captured) [6] and thus could take real advantage from the
use of the combination approaches here analyzed.

2 Related Work

A large amount of research work on traffic classification has been published in the
past ten years, including several surveys and papers making comparisons among
different techniques [20] [29] [10] [24]. All of them show pros and cons of different
techniques and approaches as well as their inability to reach 100% classification
accuracy. On the other side, research in the fields of machine-learning and pat-
tern recognition has developed combination algorithms for classification prob-
lems that allow several improvements, included an increase in overall classifica-
tion accuracy [22]. In the field of network traffic classification, a first rudimental
combination approach to traffic classification was proposed in [26]: three different
classification techniques are run in parallel (DPI, well-known ports and heuristic
analysis), and a decision on the final classification response is taken only when
there is a match between the results of two of them (otherwise the multi-classifier
reports “unknown”). In [14] and [13], instead, we proposed the idea of combin-
ing multiple traffic classifiers using advanced combination strategies, inspired by
research in the machine-learning and pattern-recognition fields related to multi-
classification [22]. The approach of combining multiple classification techniques
through specific algorithms to build a more accurate “multi-classifier”, indeed,
has been already used with success in other networking reasearch areas as net-
work intrusion and anomaly detection [12]. As for traffic classification, concepts
like En-semble Learning and Co-training have been introduced in [18], where a
set of similar classifiers co-participate to learning, while an advanced combina-
tion of different traffic classification techniques has been shown in [9]. However,
in that work, only variants of the Dempster-Shafer algorithm and a majority
vote are taken into account, while in this paper we consider a more complete
set of combination algorithms representative of the state of the art in multi-
classification [22] – including those based on the Behavior Knowledge Space –
plus we experiment on varying the composition of the pool of traffic classifiers.
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Moreover, our contribution goes into a specific, and novel, direction by examin-
ing the impact of traffic classification under early-classification constraints. We
pursue this target by evaluating the behavior of both the stand-alone classifiers
and their combinations when trained and tested with discriminating features ex-
tracted only from a limited number of packets (from a single packet to the first
ten packets). Several works have been presented that tackle the problem of early
traffic classification [7] [11] [16], and they show the tradeoff between the amount
of packets considered for extracting flow features and classification accuracy. In
this work, for the first time we propose multi-classification as a way to improve
accuracy while keeping the amount of information used for classification low.

3 Combination Algorithms

In many pattern recognition applications, achieving acceptable recognition rates
is conditioned by the large pattern variability, whose distribution cannot be
simply modeled. This affects the results at each stage of the recognition system
so that, once it has been designed, its performance cannot be improved over
a certain bound, despite the efforts in refining either the classification or the
description method.

In the last years, some research groups concentrated the attention on a mul-
tiple classifier approach [8, 19, 21, 31]. The rationale of this approach lies in the
assumption that, by suitably combining the results of a set of base classifiers, the
obtained performance is better than that of any base classifier: it is claimed that
the consensus of a set of classifiers may compensate for the weakness of a single
classifier, while each classifier preserves its own strength [21]. The implementa-
tion of a multiple classifier system implies the definition of a combiner [22] for
determining the most likely class a sample should be attributed to, considering
the answers of the base classifiers.

Different combiners, independent of the adopted classification model, have
been proposed in the literature [8,22]. In the following we give a short introduc-
tion on the considered combiners. Since some traffic classifiers can be only seen
as a Type 1 classifier (i.e. a classifier that outputs just the most likely class),
we considered only criteria that can be applied to classifiers that provide a crisp
label as output. It is worth noting, in fact, that some well-known combination
schemes (such as the Decision Templates proposed in [23]) cannot be applied to
Type 1 classifiers, since they require class probability outputs (i.e., the so-called
Type 3 classifiers1).

Before entering in details, it is worth recalling that some combiners make
use of the so-called confusion matrix [31] for combining Type 1 classifiers. The
classification confusion matrix Ek is such that the generic element ek

ij (1 ≤
i, j ≤ m, where m is the number of the classes) represents the percentage of
samples belonging to the i-th class that the k-th classifier assigns to the j-th
1 For the sake of completeness let us recall that Type 2 classifiers operate at rank

level, providing as output a subset of all the possible classes, with the alternatives
ranked in order of plausibility of being the correct class.
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class. Therefore, the value ek
ii represents the percentage of samples belonging to

the i-th class which are correctly classified by the k-th classifier. The values of
the elements of Ek should be computed using a set of data (namely, a validation
set) different from both the training and the test set.
1) Majority Voting (MV ): each classifier votes for one class and the guess class
is the one voted by the majority. If more classes obtain the same number of
votes, the values ek

ii are used for tie breaking, i.e. the vote of each classifier
is weighted by the number representing the confidence degree of that classifier
when it assigns a sample to the class it is voting for.
2) Weighted Majority Voting (WMV ): in this case the confidence degree evalu-
ated by means of the confusion matrices was used for weighting the votes given
by each classifier. The combiner assigns each sample to the class C such that:

C = argmax
i

∑

k

ek
ii · V k

i (1)

where V k
i is 1 if the guess class of the k-th classifier is i and 0 otherwise.

3) Näıve Bayes (NB): the guess class is the one which maximizes the a posteriori
probability. The probability that a sample belongs to the i-th class when the k-th
classifier assigns it to the j-th class is assumed to be:

Mi · ek
ij

m∑

h=1

Mh · ek
hj

(2)

being Mi the number of samples belonging to the i-th class. Applying the Bayes’
formula and standing the assumption of the independence of the classifiers, it
can be simply shown, starting from the results presented in [22], that the class
C which maximizes the a posteriori probability is:

C = arg max
i

Mi ·
N∏

k=1

ek
ij (3)

where N is the number of classifiers and j is the guess class provided by the k-th
classifier.
4) Dempster-Shafer combiner (D-S ) [31]: this criterion is based on the Dempster-
Shafer theory [17]. According to it, we define for each classifier, the belief in
every possible subset A of the set Θ = {A1, A2, ... , Am}. In our context Ai is a
proposition representing the fact that a sample is assigned to the i-th class by the
considered classifier. The belief bel(.) is calculated from a function, called basic
probability assignment, which is denoted m(.), by using the following equation:

bel(A) =
∑

B⊆A

m(B) (4)

where B is any subset of A. Obviously, we have bel(Ai)=m(Ai) and bel(Θ)=1.
In our case, when the k-th expert votes for the i-th class, we consider m(Ai)=ek

ii
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and m(Θ) = 1 - ek
ii. The values m(A) supplied by each expert are combined via

the Dempster rule, and the values bel(Ai) are calculated using equation (4). The
estimated class is the one that maximizes the value of bel(Ai).
5) Behavior-Knowledge Space (BKS ) method: one of the main drawbacks of
the previously described approaches lies in the fact that they require (in a
more or less explicit way) the independent assumption of the combining clas-
sifiers. This assumption does not usually hold in real applications, especially
when the number of classifiers to be combined grows. More recently, a combiner
has been proposed in order to overcome such limitations. It derives the infor-
mation needed to combine the classifiers from a knowledge space, which can
concurrently record the decision of all the classifiers on a suitable set of sam-
ples. This means that this space records the behavior of all the classifiers on this
set, and then it is called the Behavior-Knowledge Space [19]. So, a Behavior-
Knowledge Space is a N -dimensional space where each dimension corresponds
to the decision of a classifier. Given a sample to be assigned to one of m pos-
sible classes, the ensemble of the classifiers can in theory provide mN different
decisions. Each one of these decisions constitutes one unit of the BKS. In the
learning phase each BKS unit can record m different values ci, one for each
class. Given a suitably chosen data set, each sample x of this set is classified
by all the classifiers and the unit that corresponds to the particular classi-
fiers’ decision (called focal unit) is activated. It records the actual class of x,
say j, by adding one to the value of cj . At the end of this phase, each unit
can calculate the best representative class associated to it, defined as the class
that exhibits the highest value of ci. It corresponds to the most likely class,
given a classifiers’ decision that activates that unit. In the operating mode,
the BKS acts as a look-up table. For each sample x to be classified, the N
decisions of the classifiers are collected and the corresponding focal unit is se-
lected. Then x is assigned to the best representative class associated to its focal
unit.
6) Wernecke’s (WER) method: it is similar to BKS and aims at reducing over-
training. The difference is that in constructing the BKS table, Wernecke [27]
considers the 95 percent confidence intervals of the frequencies in each unit.
If there is overlap between the intervals, the prevailing class is not considered
dominating enough for labeling the unit. In this case, the “least wrong” classifier
among the N members of the pool is identified, by using the confusion matrices.
This classifier is authorized to assign the class to that unit. To calculate the
95 percent confidence intervals (CI), we used the Normal approximation of the
Binomial distribution, as described in [22].
7) Oracle (ORA): when dealing with the evaluation of a MCS, it is useful to
consider the performance of the so-called “Oracle”. The Oracle is the theoretic
MCS that correctly classifies a sample if at least one of the base classifiers is
able to provide the correct classification. It is evident that for a defined set of
classifiers, the performance of the Oracle is an upper bound of all the MCS’s
obtainable from the same set of classifiers by using any combiner.
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Table 1. Combination Algorithms

Label Technique Category Training

NB Naive Bayes Bayesian Confusion Matrix
MV Majority Voting Vote Confusion Matrix

WMV Weighted Majority Voting Vote Confusion Matrix
D-S Dempster-Shafer Dempster-Shafer Confusion Matrix
BKS BKS Behavior Knowledge Space BKS
WER Wernecke Behavior Knowledge Space BKS&Confusion Matrix
ORA Oracle Oracle na

4 The Tools Used

TIE2 is a software platform for experimenting with and comparing traffic clas-
sification techniques. TIE allows the development of algorithms implementing
different classification techniques as classification plugins (see Fig. 1) that are
plugged into a unified framework, allowing their comparison and combination.
We refer the reader to [13] as regards the TIE platform as well as the TIE-L7
classification plugin, which implements a DPI classifier using the techniques and
signatures from the Linux L7-filter project [1] and that we used here to produce
the ground truth. In the following, instead, we describe the new features we
introduced in TIE in order to develop this work.

First of all, the above-mentioned combination strategies have been imple-
mented in TIE’s decision combiner (Fig. 1) and a set of support scripts have
been developed in order to extract from the ground-truth (generated by TIE-
L7) the confusion matrix and the BKS matrix needed for training the combiners.
This information is reported into configuration files that are read at run time by
the combiner selected by a command-line flag.

Moreover, in order to be able to rapidly test different machine-learning ap-
proaches to traffic classification we used the WEKA tool3 that already imple-
ments a large number of machine-learning classification techniques. We plan to
implement some of such techniques as TIE classification plugins, but in order
to study and test a relevant number of machine-learning approaches we imple-
mented a “bypass” mechanism in TIE which is structured in three phases:

– A new option allows, for each flow, to dump the corresponding classification
features extracted by TIE (e.g. first ten packet sizes, flow duration, etc.)
along with the ground truth label assigned by TIE-L7. Such information is
dumped in a file in the arff format used by WEKA.

– The arff file is split in the training and test sets that are used to train and test
various WEKA classifiers, whose classification output is in arff format too.

– A new TIE classification plugin is able to read the output of a WEKA
classifier and use it to take the same classification decision for each flow.
Multiple instances of such plugin can be loaded in order to support the
output of several “WEKA” classifiers at the same time.

2 http://tie.comics.unina.it
3 http://www.cs.waikato.ac.nz/ml/weka
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Fig. 1. TIE overall architecture

In this way TIE has a common view of both WEKA classifiers and TIE classifi-
cation plugins: all these classifiers are seen as TIE plugins. This approach allowed
us to easily test several classification approaches and to combine several of them
plus pre-existing TIE classification plugins not based on machine-learning tech-
niques (e.g. port-based and a novel lightweight payload inspection technique). In
addition, based on the results of our studies on multi-classification we can later
implement in TIE only the best performing classifiers.

Finally, in order to study the behavior of the classifiers and of the multi-
classifier systems built on them, we introduced the option in TIE to generate
a different file of features (in arff format) depending on the number of packets
for each flow that can be used for extracting features. This option affects also
the native TIE classification plugins that acquire the features directly by TIE’s
feature extractor (Fig. 1).

5 Data Set and Stand-Alone Classifiers

For the experimental results shown in this paper we used the traffic trace de-
scribed in Table 2, in which we considered flows bidirectionally (biflows in the
following) [13]. Each biflow has been labeled by running TIE with the TIE-L7
plugin in its default configuration, i.e. for each biflow a maximum of 10 packets
and of 4096 bytes are examined.

Table 2. Details of the observed traffic trace

Site Date Size Pkts Biflows
Campus Network of the University of Napoli Oct 3rd 2009 59 GB 80M 1M

From such dataset we then removed all the biflows labeled as UNKNOWN
(about 167,000) and all the biflows that summed to less than 500 for their
corresponding application label. Table 3 shows the traffic breakdown obtained4.
This set was then split in three subsets in the following percentages:

– 20% classifiers training set
– 40% classifiers & combiners validation set
– 40% classifiers & combiners test set

4 QQ is an instant messaging application.
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Table 3. Traffic breakdown of the observed trace (after filtering out unknown biflows
and applications with less than 500 biflows)

Application Percentage of biflows
BITTORRENT 12.76

SMTP 0.78
SKYPE2SKYPE 43.86

POP 0.24
HTTP 16.3

SOULSEEK 1.06
NBNS 0.14
QQ 0.2
DNS 4.08
SSL 0.21
RTP 1.16

EDONKEY 19.21

Table 4. Stand-alone classifiers

Label Technique Category Features
J48 J48 Decision Tree Machine Learning PS, IPT

K-NN K-Nearest Neighbor Machine Learning PS, IPT
R-TR Random Tree Machine Learning L4 Protocol, Biflow duration & size, PS & IPT statistics
RIP Ripper Machine Learning L4 Protocol, Biflow duration & size, PS & IPT statistics
MLP Multi Layer Perceptron Machine Learning PS
NBAY Naive Bayes Machine Learning PS

PL PortLoad Payload Inspection Payload
PORT Port Port Ports

We considered eight different traffic classifiers, summarized in Table 4. The
first five are based on Machine-Learning approaches common in literature both
in terms of algorithms and discriminating features [28, 3, 25, 4]. As regards the
features, in the same table PS stands for Payload Size, while IPT means Inter-
Packet Time [15]. The J-48, K-NN, MLP, and NBAY classifiers consider the
vectors of the first 10 PS and IPT, whereas the R-TR and RIP classifiers use
statistics of PS and IPT as their average and standard deviation. The latter
classifiers also take into account the transport-level protocol of the biflow, the
biflow duration (in milliseconds) and size (in bytes). The PortLoad classifier,
instead, is a light-weight payload inspection approach, recently presented in [2],
that overcomes some of the problems of DPI, as computational complexity and
invasiveness, at the expense of a reduced accuracy. PortLoad only uses the first 32
bytes of transport-level payload from the first packet (carrying payload) seen in
each direction. Finally, we also considered the traditional traffic classifier based
on transport-level protocol ports.

Table 5 shows the classification accuracy (i.e. percentage of correctly classified
biflows) of every stand-alone classifier for each application and over the entire
test set. The different performance of the classifiers for every application, and
in particular the best accuracy score for each of them (printed in bold font),
show that they have some complementarities. Moreover, the Port classifier has
a very low overall score, which in general would suggest to avoid its use in a
multi-classifier system, but we considered it because it reaches very high ac-
curacy values for some specific applications. Finally, the last column contains
the accuracies that would be obtained by the oracle, that is, by selecting for
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Table 5. Classification accuracy – per-application and overall – of stand-alone classi-
fiers (best values are in bold font) and oracle

Classifier
J48 K-NN R-TR RIP MLP NBAY PL PORT ORACLE

Class
Bittorrent 98.8 97.4 98.9 98.6 55.1 79.9 7.7 21.0 99.9

SMTP 95.1 92.9 93.8 96.0 90.6 69.2 8.2 96.3 99.4
Skype2Skype 98.8 97.2 96.5 99.2 94.6 31.8 98.7 0 99.7

POP 96.0 95.0 98.7 93.9 0 79.6 29.2 100 100
HTTP 99.5 98.9 99.6 99.3 94.3 63.3 99.1 47.7 100

Soulseek 98.6 96.8 98.3 98.1 93 97.7 0 0 99.9
NBNS 78.4 75.9 79.9 80.4 9 0 0 0 85.4
QQ 0 0.7 2.5 0 0 0 0 0 3.2
DNS 93.6 92.6 95.3 94.4 51.1 86.2 100 99.7 100
SSL 96.1 93.1 95.2 93.7 69.5 68.2 99.1 0 99.6
RTP 84.0 74.1 64.5 77.3 0 41.5 0 0 92.2

EDonkey 93.0 91.7 93.3 91.5 72 16.1 92.9 0.1 95.7
overall 97.2 95.9 96.3 97.0 82.3 43.7 83.7 15.6 98.8

each biflow the correct response when this is given by at least one of the stand-
alone classifiers. The overall accuracy obtained by the oracle (98.8%) shows that
the combination of these classifiers can theoretically bring an improvement with
respect to the best standalone classifier (97.2%).

6 Experimental Evaluation of Combiners

We experimented the combination of the stand-alone classifiers from the previ-
ous section using the algorithms explained in Section 4. When combining the
classifiers we experimented with different pools of them, as shown in Table 6,
where the overall accuracies for each pool and combiner are reported. The val-
ues show that in general it is indeed possible to gather an improvement through
combination, as suggested theoretically by the oracle, but this improvement de-
pends not only on the combiner adopted, but also on the choice of the classifiers.
The port-based classifier has in general a negative impact on the performance of
the multi-classifier system, the same happens for the Naive Bayes classifier. This
behavior can be easily explained by looking at their rather low performance as
stand-alone classifiers (Table 5). In particular, the performance of the MV and
the WMV combiners dramatically depend on the weak performance of the Naive
Bayes classifier, since the worst pools for these combiners are those in which this
classifier is present. This can be explained by considering that the worst per-
formance of the Naive Bayes classifier happen on the classes in which also the
MLP classifier performs quite bad, so lowering the performance of voting-based
combiners. On the contrary, the D-S combiner and the multinomial approach
followed the BKS methods and are able to cope with such a situation. Finally,
since the independent assumption of the base classifier does not always hold, the
Naive Bayes combiner does not perform very well on the average.

The pool of classifiers achieving the best results is reported in Table 6 in bold
fonts, using 6 classifiers out of the 8 tested, and closely followed by the second
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Table 6. Classification accuracy of each combiner for different pools of classifiers com-
bined (best or close to the best values are reported in bold font)

Pool of classifiers Combiner
J48 K-NN R-TR RIP MLP NBAY PL PORT NB MV WMV D-S BKS WER
X X X 54.1 96.3 96.3 96.2 97.7 97.7
X X X X 55.2 96.4 96.2 96.6 97.8 97.8
X X X X X 53.5 90.7 90.7 96.7 96.0 96.1
X X X X X X 80.1 72.0 72.2 96.7 97.3 97.3
X X X X X X 93.5 90.8 91.0 97.0 97.9 97.9
X X X X X X X 80.9 72.0 72.2 97.0 97.7 97.7
X X X X X X X 93.6 90.5 90.8 97.1 97.7 97.7
X X X X X X X X 54.6 72.8 71.2 97.1 97.4 97.4

pool in the table that includes only 4 classifiers. As for the combiners, the same
table shows that the best accuracies (percentages in bold fonts) are achieved by
the combiners based on the Behavior Knowledge Space (BKS and Wernecke),
with the highest score of 97.9% overall accuracy. This value should be interpreted
by considering the highest overall accuracy achieved by a stand-alone classifier
(97.2%) and the maximum theoretically possible combination improvement set
by the oracle (98.8%): an improvement equal to 43% of the maximum achievable.

We then focused our experiments on the context of early classification. This
subject has been previously investigated in literature because of its important
applicative characteristics, being early classification indispensable to perform on-
line classification of traffic flows: a new traffic flow is observed on a link and the
system must identify as soon as possible the application associated to it (e.g. in
order to apply a security policy to the flow). In such case, therefore, classification
cannot be performed with all the flow information available, and literature [6,2]
has shown that there is indeed a trade-off between the ability of classifying a
flow using only its first packets and the classification accuracy. In our experimen-
tal analysis we investigated the benefits of multi-classification in this context.
We therefore repeated all the training and testing of the stand-alone classifiers
previously considered with a variable amount of information available, that is
by varying the number of packets for each flow from which the discriminant
features were extracted. We also repeated the combination experiments varying
the number of packets and considering the J48,R-TR,RIP,PL pool of classifiers.
We chose this pool because its overall accuracy values are very close to those
of the best pool but a reduced number of classifiers is used. Moreover, all the
classifiers from this pool use algorithms with a small computational complexity.
This is particularly relevant in the context of online classification.

Table 7 shows the performance of the stand-alone classifiers when 1 to 10
packets are used to extract classification features. The PortLoad classifier is
based on a technique that uses at most 2 packets, therefore accuracies related
to more than 2 packets are all equal, whereas the port-based classifier needs a
single packet to perform classification. The best accuracy value for each number
of available packets is reported in bold font. The results in the table confirm
the impact of reducing the amount of available information on classification
accuracy, as suggested by the literature. Moreover, the values in this table can
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Table 7. Classification accuracy of each stand-alone classifier depending on the number
of packets used for the feature extraction (the highest accuracy for each column is
reported in bold font)

Number of packets observed for each biflow
Classifier 1 2 3 4 5 6 7 8 9 10

J48 62.1 94.6 95.9 96.0 96.8 97.1 97.2 97.2 97.2 97.2
K-NN 62.4 91.5 92.8 95.0 94.9 94.9 95.4 95.7 95.6 95.9
R-TR 72.7 93.4 93.6 94.9 95.3 96.8 96.0 96.0 96.1 96.2
RIP 69.5 93.7 94.7 96.2 96.1 96.5 96.7 96.9 96.9 96.9
MLP 43.5 71.7 81.0 82.3 82.3 82.3 82.3 82.3 82.3 82.3
NBAY 31.5 39.9 42.6 43.7 43.7 43.7 43.7 43.7 43.7 43.7

PL 76.2 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7
PORT 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6

Table 8. Classification accuracy when varying the number of available packets. Pool
of combined classifiers: J48,R-TR,RIP,PL.

Number of packets observed for each biflow
Combination 1 2 3 4 5 6 7 8 9 10

MV 57.8 93.9 94.4 95.6 95.9 96.2 96.3 96.3 96.4 96.4
D-S 83.1 96.0 96.9 97.0 97.4 97.4 96.4 96.5 96.5 96.5
BKS 97.0 98.4 98.3 98.4 98.4 98.4 98.4 98.4 98.4 98.4
WER 97.0 98.3 98.2 98.4 98.4 98.4 98.4 98.4 98.4 98.4

Fig. 2. Classification accuracy of the best-performing stand-alone classifier (blue line)
vs the multi-classifier (red line)

be compared with the results of multi-classification reported in Table 8. Here,
to reduce the large amount of experiments, we limited our tests to only four
combiners (including the best two methods). The overall accuracy values show
that in the case of early-classification the impact of multi-classification is rather
significant, this is also visible in Figure 2 where we plotted for each number of
available packets both the highest accuracy achieved by stand-alone classifiers
(blue line) and the highest accuracy achieved by the combiners (red line): for 1
packet the combination brings an improvement of about +21% overall accuracy,
while for 2 packets it is of about +4%. Such large improvements suggest that
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multi-classification may be an effective strategy for the implementation of more
accurate traffic classifiers able to work online in the context of early classification.

7 Conclusion

In this work we have presented and evaluated different combination techniques
for traffic classification, including the BKS-based algorithms, which were not
previously proposed in the traffic classification field. Moreover, for the first
time we proposed the use of multi-classification in the context of early traffic
classification. The preliminary experimental results here presented show several
findings:

– The combination of stand-alone classifiers that present complementarities
can improve the overall classification accuracy.

– The combiners based on the Behavior Knowledge Space look more promising
than the others with respect to traffic classification. This behavior can be
due to the fact that in our case the independent assumption of the combining
classifiers does not hold. Moreover, the availability of a significant amount
of training data does not cause BKS overtraining (which is one of the main
drawbacks of this method).

– Even if literature has shown that the transport-level port is still a useful
classification feature, combiners cannot effectively exploit the (small) dis-
criminating power of a port-based traffic classifier. On the contrary, classi-
fiers based on (light-weight) payload inspection complement very well with
machine-learning classifiers.

– The positive impact on overall accuracy of combination is particularly sig-
nificant in the context of early classification. With very strict requirements
(e.g. 1 or maximum 2 packets per biflow) the performance decrease in terms
of classification accuracy of the stand-alone classifiers can be almost entirely
compensated by their combination.

As future work, we plan to extend this investigation to traffic traces from dif-
ferent links. Moreover we will focus furthermore on the exploitation of multi-
classification in the context of early-classification, investigating in detail also
computational complexity and timing-related issues. For this purpose we will
also implement the machine-learning classifiers that were best performing as
TIE plugins.
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Abstract. Traffic classification is a preliminary and essential step for achieving 
stable network service provision and efficient network resource management. 
While a number of classification methods have been introduced in the literature, 
the payload signature-based classification method shows the highest 
performance in terms of accuracy, completeness, and practicality. However, the 
payload signature-based method has a significant drawback in high-speed 
network environments; the processing speed is much slower than that of other 
classification methods such as the header-based and statistical methods. In this 
paper, we describe various design options to improve the processing speed of 
traffic classification in designing a payload signature-based classification system, 
and we describe choices we made for designing our traffic classification system. 
Also, the feasibility of our design choices was proved via experimental 
evaluation on our campus traffic trace. 

Keywords: payload-signature, traffic classification, flow analysis. 

1   Introduction 

As individual and corporate users are becoming increasingly dependent on the 
Internet, network speeds are increasing and a variety of services and applications are 
being developed. Thus, there is a growing need for monitoring and analyzing Internet 
traffic from the application perspective for achieving efficient network operation and 
management in various areas, for example, pay-for billing, CRM, SLA, etc. Further, 
the need for traffic monitoring and analysis will continue to increase. Effective 
methods are needed for analyzing many types of application-level traffic and handling 
real-time processing for the large amounts of traffic on high-speed links. 

Traffic classification is a preliminary and essential step for achieving stable 
network service provision and efficient network resource management. While a 
number of classification methods have been introduced in the literature, the payload 
signature-based classification method shows the highest performance in terms of 
accuracy, completeness, and practicality. [1, 3, 4, 8, 9] However, the processing speed 
of the current classification system is insufficient for real-time handling of the large 
amounts of traffic on high-speed networks.[6, 7, 11] Given the increasing number of 
applications and greater usage of applications that generate large amounts of traffic, 
the inadequate processing speed of payload-based analysis is a challenge that must be 
mitigated. In this paper, we will define the factors affecting the processing speed of 
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the signature-based classification system. We aim to improve the processing speed by 
proposing an optimal classification system structure based on the experimental 
evaluation of possible design choices for the classification system. 

This paper is organized as follows. Section 2 describes research related to this issue 
and Section 3 describes the design considerations needed for the current payload-
based classification systems. Section 4 presents the factors affecting processing speed. 
An optimal solution based on the experimental results is suggested in order to 
improve the processing speed. In Section 5, the proposed method is applied to our 
classification system and its validity is proven. Finally, in Section 6, conclusions and 
future research directions are described. 

2   Related Works 

Many applications try to bypass the firewall for a seamless service by frequently 
changing traffic patterns, so the signature appears in a complex form. In addition, due 
to the increase of network-based applications and application layer protocols, the 
number of signatures necessary for identifying applications has been increasing. As 
the number of signatures and their complexity increase, the processing speed of the 
payload signature-based classification system has become an important element in 
determining the performance of the traffic classification system. Many ongoing 
studies on payload signature-based classification systems aim to accelerate the 
classification process, but most studies have focused on improving the performance of 
the pattern-matching algorithm. 

Table 1. Comparison of two classification systems 

Tool Signature Format No. of Signatures bps Matching Algo. 
L7-filter Regular Expression About 70 Less than 10Mbps NFA 

Snort 
Explicit String + 

Regular Expression 
About 5000 Less than 100Mbps DFA 

 
Table 1 compares the classification speed of two popular traffic analysis systems, 

Snort and Linux L7-filter. The table shows the configuration of the signature-based 
classification system. The L7-filter is widely used for application-level traffic 
classification. It uses regular expressions to represent signatures and NFA (Non-
deterministic Finite Automata) for pattern-matching. However, when over 70 
signatures are used to classify applications, it shows a processing speed of 3.5Mbps or 
less. [6] DFA (Deterministic Finite Automaton) has been proposed to increase the 
processing speed of NFA. Snort applies the DFA-based pattern matching method, but 
it has a processing speed of less than 100Mbps [6, 7, 11]. These two systems have 
tended to focus on pattern matching algorithms to improve performance. However, 
the time complexity of the matching algorithm is wholly dependent on the 
configuration of the input data, resulting in limited performance improvement. Thus, 
real-time traffic analysis of high-speed links (Gbps) might be insufficient if they are 
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Fig. 1. Flow Chart of our Traffic Classification System 

only based on the elaboration of the matching algorithm. Thus, we must consider 
other options to improve the processing seed of the traffic classification system. 

Figure 1 illustrates a payload-based traffic classification system in the form of a 
flow chart, which consists of two main modules: the payload signature extraction 
module and traffic classification module with the extracted signatures. We have 
developed this system and deployed it in our campus network for real-time 
classification of campus Internet traffic. A total of 845 payload signatures were 
extracted via the payload-signature extraction system. The system specification was 
Intel ® Core2 Duo E7200 2.53GHz CPU with 3GByte memory. The average 
processing speed of our system was 160Mbps of Internet traffic. This speed is 
insufficient to support the link rate (up to 300Mbps) of our campus Internet traffic. 

The most time-consuming aspect of the classification system was the signature 
matching module in Figure 1. This is shown in Table 2, which compares the 
execution times of modules 1, 2, 3, and 4 in our classification system. The signature 
matching module was the most time consuming and used about 83% of the total 
processing time. In this paper, we propose a means to utilize a matching algorithm 
and show how to optimize the search space in order to improve the processing speed 
of the payload signature-based traffic classification system. 

Table 2. Comparison of module execution time ratios 

Module 
Load Pkt 
Payload 

Load 
Signature 

Construct 
Automata 

Matching 

Execution Time Ratio 0.31% 7.63% 8.72% 83.33% 



 Software Architecture for a Traffic Classification System 139 

3   Considerations for Performance Enhancement 

In this section, we describe three considerations needed to improve the processing 
speed of the payload signature-based traffic classification system. The current 
classification method described in the previous section is not optimized for these three 
considerations. The three considerations include the matching algorithm, input data 
search space, and signature search space.  

First, we need to select the best matching algorithm and signature representation 
method for traffic classification. There is no matching algorithm that is optimized for 
all types of input data. Table 3 describes the time complexities of several string 
pattern matching algorithms used in various fields, including traffic analysis. We 
categorized their signature types into two groups: an explicit string and a regular 
expression. Each algorithm provides a different level of performance based on the 
features of its input data. For example, the processing speed of the Boyer-Moore 
algorithm increases when there is more frequent matching of string characters with 
strings in the payload. However, because of the nature of the payload, it is likely that 
available characters will be present and repeated characters will be infrequent. Thus, 
we cannot guarantee performance. There is the additional problem that we cannot 
guarantee the performance of DFA or NFA, because their performance depends on 
the frequency of the wildcard character * in the signature string. 

Table 3. Time–complexity comparison of several matching algorithms 

Algorithm Preprocessing time Matching time 

Brute-force No preprocessing Θ(nm) 
DFA Θ(m |Σ|)  Θ(n) 

Robin-Karp Θ(m)  Θ((n-m+1) m) 
Explicit 
String 

Boyer-Moore Θ(m + |Σ|)  Ω(n/m), O(n) 
NFA  Θ(m |Σ|)  Ω (n2) Regular 

Expression DFA Θ(m |Σ|)  Ω (1) 

n: Payload length, m: Signature length , Σ: A number of available characters 

 
Second, we need to optimize the search space in the flow of the selected matching 

algorithm. The flow-based analysis, other than of the packet-based one, is popularly 
used in traffic analysis. In addition, we need to minimize the number of packets in a 
flow and limit the byte size in the packet that will be searched. Figure 2 shows the 
distribution of the matched location of signatures when we applied our classification 
system with about 845 signatures. Most signatures were found within the first two 
packets in a flow and within the first 500 bytes in the packets, as is shown in Figure 2. 
However, our classification system performs matching for every packet in the flow 
and all bytes in a packet, which results in significant performance degradation. We 
believe that we can utilize this experimental result to reduce the search space of the 
input data for the matching algorithm. 
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Fig. 2. Matched Signature Offset 

Third, we need to consider how the order of signature matching depends on the 
change of traffic conditions. Our current classification system does not reflect the 
change of traffic patterns over time. By operating our system on our campus network, 
we learned that the signature locality can be found over time. Aggressive use of only 
a small number of signatures out of the total number can identify the traffic flows 
during a certain time period. Further, the active signatures change over time. 
 

 

Fig. 3. Matched Signature Hit Count 

Figure 3 shows the cumulative hit count for traffic signatures, based on the existing 
classification system, over a period of five hours. Hits occurred for a total of 260 
signatures out of 845. Only about 60 signatures had hit counts greater than 1000. 
Therefore, the number of applications available at a certain time is small and most of 
the traffics can be classified by using only a few signatures for the classification 
system. 

4   Classifier Optimizations 

In this section, we propose our solutions for the problems mentioned in Section 3. We 
are aiming to optimize the processing speed of the classification system. We will 
prove the validity of these solutions via experiments.  
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4.1   Matching Algorithm and Signature Representation 

In this section, we will describe the attempt to optimize our classification system in 
terms of the matching algorithm and signature representation. The performance of the 
matching algorithm varies depending on how the signatures are represented. 
Therefore, it is reasonable to select many different matching algorithms based on 
various signature types. Also, we will describe the signature format we selected in 
order to optimize the classification algorithm. 

Table 4. Comparison of the matching algorithm performance according to signature types 

Matching Algorithms
Signature Type 

Robin-
Karp 

DFA 
Full 

NFA 
Partial 

NFA 
Full 

Fixed offset 0.03 sec 0.05 sec 0.08 sec 0.08 sec Explicit String 
Variable offset 1.28 sec 0.32 sec  0.90 sec 0.42 sec 

“.*” <= 2 3.45 sec 0.19 sec 0.08 sec 0.16 sec Regular 
Expression “.*” > 3 1.35 sec 0.06 sec  0.05 sec 0.55 sec 

 
Table 4 shows the processing time of four popular matching algorithms for various 

signature types. We initially divided signature types into two categories: explicit 
string and regular expression, based on the method of signature representation. An 
explicit string is further classified into fixed offset and variable offset according to the 
signature location in the input data. A regular expression is classified into two types 
according to the frequency of the wildcard character ‘*’ in a signature, as is shown in 
Table 4. 

In order to determine the best matching algorithm according to the type of 
signature representation, we divided the signatures into 4 types and applied each 
signature type to the Robin-Karp, DFA and NFA matching algorithms. The 
experimental result shows that the performance of the matching algorithms varies 
depending on the signature types. Thus, there is no single best matching algorithm for 
all input data types. The algorithm performance can vary depending on the features of 
each input data type.  

Table 5. Selected matching algorithms according to signature types 

Signature Type Matching Algorithm Library 

Fixed offset Robin-Karp Self-implemented Explicit String 
Variable offset DFA Full Boost library 

“.*” <= 2 NFA Partial PCRE library Regular 
Expression “.*” > 3 NFA Partial PCRE library 

 
Table 5 shows our selection of matching algorithm. We selected different matching 

algorithms in accordance with the signature types based on our experiment. For a 
signature in the form of an explicit string with a fixed offset, the Robin-Karp string 
matching algorithm is used. For an explicit string signature with a variable offset, the 
DFA full matching algorithm is selected. For signatures in the form of regular 
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Fig. 4. Performance of Selective Matching Method versus NFA Partial Method 

expressions, the NFA Partial matching method is selected. For the experiments, we 
implemented the Robin-Karp algorithm ourselves, and we utilized the Boost and 
PCRE libraries for the DFA and NFA algorithms, respectively. 

Figure 4 shows the performance of our selective matching method in comparison 
with the NFA-Partial method that gives the highest average performance for a single 
matching algorithm for all types of signatures. The y-axis in Figure 4 indicates the 
maximum throughput (bps) of the matching method. The proposed selective method 
can handle an average of 50Mbps more than that of the NFA-Partial method. 

Previously, the signature was mostly represented as an explicit string, but it is more 
often represented as a regular expression nowadays. Considering signatures in the 
form of regular expressions, the frequency of the characters ‘^’, ‘$’, ‘.’, ‘*’, “[]” is a 
factor affecting the processing speed of the matching algorithm. By using '^' and '$', 
the matching algorithm can improve the processing speed. The use of the wildcard 
character ‘*’ and bracket expression “[]” causes an increase in the number of states 
for an automata. So, the processing speed of the matching algorithms can be increased 
by using wildcards and brackets. We utilized this information to refine all of our 845 
signatures. 

Table 6. Signature distribution before and after refinement 

Feature Before refinement After refinement 

Signatures with ‘^’ or ’$’ 45.45% 50.78% 
Signatures with more than 3 “.*”  6.49% 3.48% 

Signatures with “[]” 0% 0% 

 
Table 6 represents the signature proportions before and after refining the 

signatures. The percentage of signatures where ‘^’ and ‘$’ are present was increased, 
and the percentage of expressions with more than three "*" characters was decreased. 
In addition, no signature expressions used the bracket expression “[]”. 

The classification rate has been improved by about 1-2 seconds after refining the 
signatures. This improvement is due to the reduction in the use of wildcards and 
increase in the incidence of expressions using a signature in fixed offset form with '^' 
and '$' characters. 
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4.2   Optimization of Search Space 

This section describes how to optimize the search space of the input data and the 
signature provided to the classification system. 

4.2.1   Inspected Packet Count in Terms of Flow and Packet Size 
The processing time of the classification system can be reduced by limiting the 
number of packets inspected in the flow. Table 7 shows the measurements of 
performance as the number of packets inspected in a flow increases. The packets 
inspected are defined as the first n packets with a payload after the TCP connection 
setup. According to the analysis results shown in Table 7, the classification accuracy 
and completeness increases as the number of packets inspected increases, but they are 
almost identical after the fifth packet. This is because most connections send a low 
number of control packets before sending the contents that are common among all of 
the same connection types. Most payload signatures are extracted from the first 
several packets in a flow. Therefore, the classification result is sufficiently accurate 
and the classification time is reduced by limiting the number of packets inspected to 
the first 5 packets in each flow. 

In case of inspection of the first packet in a flow, completeness is less than 80% 
because the classification system could not classify mfile[14] flows. The application 
flows identified the second packet in the flow. 

A limit on bytes inspected in a packet needs to be considered in order to reduce the 
search space of the input data of the classification system. In accordance with the 
experimental result shown in Figure 2, we limited the inspected byte size in a packet 
to the first 1000 bytes. We can reduce the processing time of our classification system 
by limiting the number of packets inspected in a flow and limiting the byte size in a 
packet. This allows our system to cope with more bandwidth from a high-speed link. 

Table 7. Performance measurement according to the number of packets inspected  

No. of pkts inspected 
 

Performance  
Pkt1 Pkt2 Pkt3 Pkt4 Pkt5 Pkt6 Pkt7 

Flow 92.3 93.1 93.1 93.2 93.2 93.2 93.2 
Packet 82.4 85.2 86.5 86.7 86.8 86.8 86.8 

Completeness 
(%) 

Byte 77.5 81.1 82.2 82.5 82.7 82.7 82.7 
Flow 96.2 96.3 96.3 96.3 96.3 96.3 96.3 

Packet 98.6 98.7 98.7 98.7 98.7 98.7 98.7 
Accuracy 

(%) 
Byte 97.4 97.6 97.6 97.6 97.6 97.6 97.6 

4.2.2   Two-Level Hierarchical Signature Structure  
We can reduce processing time by constructing the payload signatures in the form of 
a 2-level hierarchical structure, which consists of an application protocol-level 
signature and an application-level signature, as is shown in Figure 5. Nowadays, a 
number of different applications commonly use an application-level protocol for 
various purposes. For example, the HTTP protocol is widely used by many 
applications. It is reasonable to distinguish these types of HTTP traffic according to 
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their applications rather than considering only a single type of HTTP traffic. In our 
signature hierarchy, HTTP traffic is detected at the first level, and the application 
name is then determined at the second level. The signature hierarchy is defined by an 
inclusion relationship. If all traffic identified by using signature SX can be classified 
by using signature SY, then SY includes SX. SY is called an application protocol-level 
signature, while SX is called an application-level signature. 

 

Fig. 5. Two-level Hierarchical Signature Structure  

The classification system identifies input flow via the application protocol-level 
signature. If a flow was classified by using an application protocol-level signature, 
then the classification system can identify flow via the application-level signatures 
included in the application protocol-level signature. This analysis reduces the 
signature search space of the classification system and reduces processing time.  

 

Fig. 6. Inspected Signature Count per Flow 

Figure 6 shows the average number of signatures required to analyze a single flow. 
Our current analysis method compares every signature in order to analyze a flow, 
while the suggested analysis method based on the hierarchical structure can improve 
the processing speed of the classification system by reducing the search space. At this 
stage, we can achieve a reduction of more than 100 signatures out of 845 signatures. 
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4.2.3   Multiple Signatures with Single Automaton 
As the number of signatures increases, the signature search space increases and 
matching becomes more time-consuming. One method to reduce the number of 
signatures is to use a single automaton for multiple signatures. However, analysis 
time can be reduced only if the matching time of a single automaton for a group of 
signatures is shorter than the sum of the matching times of multiple automatons for a 
group of signatures. Table 8 shows the analysis time of DFA and NFA, before and 
after grouping signatures, for NateOn messenger, a widely used application in Korea. 

Table 8. Matching time 

 Signature DFA Full NFA Partial  
^GET.*NateOn.* 0.23 secs 0.05 secs 
^GET.*nateon\.nate\.com.* 0.22 secs 0.06 secs 
^GET.*adimg\.nate\.com.* 0.18 secs 0.11 secs 
^GET.*cyad\.nate\.com.* 0.25 secs 0.15 secs 

SSSA 

^GET.*nateonipml\.nate\.com.* 0.21 secs 0.10 secs 

MSSA ^GET.*(NateOn)|(nateon\.nate\.com)|(adimg\.nate\.com) 
|(cyad\.nate\.com)|(nateonipml\.nate\.com).* 0.22 secs 9.24 secs 

 
MRSA(Multiple Signatures Single String) is a signature consisting of a group of 5 

SSSA(Single Signature Single Automaton) signatures. DFA spends almost the same 
amount of time on classification before and after grouping, while the classification 
time for NFA sharply increases after grouping. Table 8 suggests that we can shorten 
classification time by classifying signatures after grouping in the form of MSSA.  

 

Fig. 7. Comparison of Processing Speed Before and After Signature Grouping 

Figure 7 shows the improvement of processing speed achieved by signature 
grouping. The search space was also decreased because grouping reduces the number 
of signatures. The figure shows a reduction of 20 seconds after grouping. 

4.2.4   Signature Locality for Optimization 
As shown in Figure 3, when the number of applications running on the target network is 
limited and only some particular applications are running during a certain time period, 
the relevant application traffic exhibits regional characteristics. Therefore, most traffic 
can be classified by using a few signatures during that specific time period. Thus, we 
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Fig. 8. Inspected Signature Count per Flow 

can minimize the search space by first examining frequently occurring signatures by 
dynamically changing the signature memory structure according to the signature hit 
ratio. We call this signature caching. 

Figure 8 describes the average number of signatures used to identify a flow with 
and without the proposed signature caching method. We used the exponential average 
value of the signature hit count to update the signature cache structure. By constantly 
updating the hit count via the exponential average, the system can deal with changes 
in application usage according to the time flow. 

The proposed signature caching method improved the processing speed of the 
classification system by reducing the signature search space by 20%. This analysis 
method based on signature frequency can minimize the signature search space 
because it examines the signature with the highest current hit count first. 

Cache hits occurred for a total of 211 signatures out of 845. More than 70% of the 
flows had hit only 20 signatures. 

5   Experimental Evaluation 

In this section, we apply the proposed method to traffic data collected from a real 
campus network, and we then prove the validity of the method. 

5.1   Traffic Trace 

In this section, we describe how a traffic classification and verification system is used 
to validate our suggested method, by applying it to a campus network. 

Figure 9 is a diagram that shows the verification method for the location of traffic 
collection, configuration of the classification system, and verification of the classified 
traffic. All packets are collected on the link connecting the campus network to the 
Internet via TCS. The collected flows are transferred to TAS and classified by the 
application unit based on the payload signature. 

In order to verify the accuracy of the results, ground-truth traffic information is 
collected via TMA[2,5]. TMA is installed on the terminal host and creates 
information based on the socket, including the process name, IP, port, protocol, and 
path. After checking the open socket on the regular host on which TMA is installed, 
the TMA information is sent to TMS, which integrates the TMA information from 
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Fig. 9. Configuration of Classification and Verification Network 

Table 9. Summary of Traffic Trace Used in Experiment 

Algorithm TCP UDP Total 
Flow 3,972,069 2,462,886 6,434,955 

Packet(K) 218,013 113,094 331,107 
Byte(MB) 188,415 100,332 288,747 

 
each host and provides the ground-truth information for the results of the 
classification system. The performance evaluation is done at TVS by comparing the 
result of TAS with the ground-truth information. 

Table 9 shows the results of the traffic trace used in the experiment. Traffic was 
collected at the Internet connection point of our campus network, and it was 
comprised of traffic from a variety of applications used by approximately 3000 hosts. 

5.1.1   Configuration of Proposed Classification System 
Table 10 presents the classification methods we applied to optimize the speed of our 
classification system, based on the experimental results presented in Section 4. 

Table 10. Summary of proposed method 

Coverage Process : 260 Application : 126 Signature : 845 
Classification Criteria Application(Set of Processes) 

Classification Unit Bidirectional Flow 

Inspected Packet Offset 1st~5th packet in flow, 1000 bytes in a packet 

Matching Algorithm Selective(RK, DFA-Full, NFA-Partial) 

Automata MSSA 

5.2   Evaluation and Analysis 

Figure 10 shows the results of the signature-based analysis used to evaluate the 
performance of the proposed methods. We compare our proposed method with the 
previous system. The graph shows the time spent on classification. The results were 
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Fig. 10. Performance of the Proposed Method 

obtained by proactively checking signatures in order to minimize the search space. 
Compared to the previous system, a 5-fold improvement in processing speeds can be 
seen. The traffic trace has different amounts of traffic, but the proposed method has 
an absolute classification time, because the signature search space is not affected by 
the amount of traffic. 

Table 11 presents the classification result of the previous and proposed methods. 
Our signature-based classification system achieved more than 95% accuracy and 80% 
completeness. We can reduce the search space of classification system, but the 
classification result is not affected. 

Table 11. Accuracy & Completeness of Proposed Method 

Accuracy Completeness Metric 
Method  Flow Packet Byte Flow Packet Byte 

Previous Method 95.57 98.31 98.70 91.17 84.25 81.21 
Proposed Method 95.57 98.31 98.70 91.17 84.25 81.21 

6   Conclusion and Future Work 

In this paper, we optimized the factors that affect the processing speed of a payload 
signature-based traffic classification system. We experimentally evaluated each factor 
and suggested a method for creating an efficient classification system. The suggested 
method showed a 5-fold improvement in processing speed over our previous 
processing classification system. 

This method provides a software-based means to improve the processing speed of 
general classification systems in the proposed computing environment. We plan to 
design a hardware-based classification system that will allow real-time analysis on a 
large-scale network. 
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Mining Unclassified Traffic Using Automatic
Clustering Techniques
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Abstract. In this paper we present a fully unsupervised algorithm to
identify classes of traffic inside an aggregate. The algorithm leverages
on the K-means clustering algorithm, augmented with a mechanism to
automatically determine the number of traffic clusters. The signatures
used for clustering are statistical representations of the application layer
protocols.

The proposed technique is extensively tested considering UDP traffic
traces collected from operative networks. Performance tests show that it
can clusterize the traffic in few tens of pure clusters, achieving an accu-
racy above 95%. Results are promising and suggest that the proposed
approach might effectively be used for automatic traffic monitoring, e.g.,
to identify the birth of new applications and protocols, or the presence
of anomalous or unexpected traffic.

1 Introduction

The identification and characterization of network traffic is one of the most
important activities for an operator. Through the continuous monitoring of the
traffic, security policies can be deployed and tuned, anomalies can be detected,
changes in the users behavior can be identified so that QoS and traffic engineering
policies can be continuously improved.

In the last years, several traffic classification techniques have been proposed.
At the beginning port-based approaches were mainly used; however, the char-
acteristics of many nowadays applications that employ randomly chosen ports,
significantly reduce the effectiveness of these approaches [1–4]. Those are today
abandoned in favor of deep packet inspection (DPI) or behavioral techniques
[13, 15]. In the first case, the traffic is classified looking for specific keywords
inside the packet payload, e.g., BitTorrent or GET/POST keywords identify the
BitTorrent and HTTP protocols, respectively. Behavioral techniques try to over-
come the limitations of DPI, e.g., when payload is encrypted, by exploiting some
description of the application behavior through statistical characteristics, such
as the length of the first packets of a flows.

All these classifiers share some key aspects. On the one hand a deep domain
knowledge is required to correctly train and periodically update these classifiers.
On the other hand, the classifiers can identify only the specific applications they
have been trained for; all other traffic is aggregated in a single class labeled
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as “unclassified”. The classifiers are therefore typically tuned to identify the
prominent classes but they completely miss the dynamics of the rest of the
traffic. For example, they cannot identify the introduction of a new application,
or changes in the users’ behavior or in the applications protocols.

Classification can happen at different degrees of granularity: packet, flow, or
endpoint1, with significant differences on the number of objects to be considered.
However, when mining the subset of unclassified traffic, the number of objects
to be analyzed is still large even when considering higher aggregation levels. For
instance, for moderate traffic aggregates, the even small fraction of unclassified
traffic is typically built by thousands of endpoints, each aggregating tens of flows
made of hundreds of packets. How to practically reduce the number of unknown
objects to analyze is therefore a key problem.

In this paper, we focus our attention on the inspection of the unclassified
traffic. We propose an unsupervised technique that, having no knowledge of the
applications that generate the traffic, partitions a traffic aggregate into “clusters”
that are distinguished based on common features, i.e., they exhibit a common
treat. A simple clustering methodology based on the K-means algorithm is aug-
mented with the capability to effectively determine the number of traffic clusters
K . The results is a simple algorithm that can reduce the number of objects to
analyze to few tens, even if the total traffic amounts to several tens of megabits
per seconds. By being completely automatic and unsupervised, the proposed
methodology can be engineered to: i) identify new classes of traffic by exploiting
the network administrator domain knowledge when inspecting a traffic cluster;
ii) monitor the traffic evolution by highlighting the birth of traffic clusters cor-
responding to traffic of previously unobserved applications; iii) design anomalies
detection techniques by observing the evolution of traffic clusters over time.

To test and validate our methodology, we consider some UDP traffic traces of
which we already have a deep knowledge on, achieved through a combination of
DPI and statistical techniques, as well as the results of some active experiments.
We consider UDP traffic since today its importance is steadily increasing [4], and
few works explicitly targeted it in the past. We apply the proposed technique
to the traces and check the coherence of the automatic classification with our
ground truth. Experimental results show that the proposed clustering algorithm
is very effective. Clusters accuracy is typically higher than 95% and the number
of clusters is also very small, e.g., never larger than 40, and typically in the
order of 25. Such a good performance is due to both the descriptiveness of the
KISS features, and the goodness of the agglomerative process. With respect to
previous proposals [5, 6] in which hundreds of clusters were needed to achieve
good accuracy, the major advantage of our solution is that it reduces the time
needed to inspect the clusters since the traffic is better partitioned.
Finally, we present some examples of classification of unknown traffic we were
able to identify.

1 A flow is commonly defined as the group of packets that have the same tuple {srcIP,
dstIP, srcPort, dstPort, protocol}. An endpoint identifies the group of flows having
the same {host IP, host Port, protocol} tuple.
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2 Data Mining Techniques and Related Work

Machine learning algorithms are data mining techniques used to create a model
from a dataset. They can be grouped in two families: supervised and unsupervised
techniques. In both cases, objects are characterized by features, i.e., a vector of
characteristics that can be extracted automatically by observation. Supervised
algorithms exploit a training dataset in which each object is labeled, i.e., it is
a-priori associated to a particular class. This coupling is used to create a suit-
able model so that objects with the same labels are grouped together. Then,
unlabeled objects can be associated to a class previously defined according to
their features. For unsupervised algorithms, instead, the grouping operation is
automated without any knowledge of a-priori labels. Groups of objects are then
clustered based only on a notion of distance evaluated among samples, so that
objects with similar features are part of the same cluster. Supervised algorithms
allow high accuracy during classification, provided that the training set is rep-
resentative of the objects.

The application of machine learning techniques is not new in the traffic clas-
sification field. [7] is one of the preliminary works and shows that clustering
techniques are useful to obtain insights about the traffic. In [6] supervised and
unsupervised techniques are compared, demonstrating that unsupervised algo-
rithms can achieve the same performance of the supervised algorithms. Other
works compare the accuracy of different unsupervised algorithms [3, 5, 8]. In gen-
eral, the techniques presented in these works achieve a very high accuracy but
they typically require several hundreds of clusters, therefore making it difficult
to then inspect and label the clusters. Recently, [9] and [10] have introduced the
semi-supervised methodology. They exploit the advantages of both methodolo-
gies: a clustering algorithm is used to partition the dataset as in the unsupervised
case. Part of the dataset is labeled, so that it is possible to extend the classi-
fication to all objects in the same cluster. Results shows that the accuracy of
the classification largely depends on the goodness and coverage of the labeled
dataset, and clusters without labeled objects cannot be further classified.

All previous works focus on the classification accuracy of some target classes,
i.e., a small subset of the applications to consider. Real traffic is however com-
posed by a large mix of applications and often it is crucial to mine the remaining
part of the traffic which is still unclassified. For example, in [3] authors show that
the best classifier has poor performance when considering the unclassified traffic
which amounts to more than 10% of the total.

In addition, the Internet represents a dynamic environment in which new
applications are born, evolve and die continuously. By following these patterns,
it is possible to better understand the users behaviors and the technology trends.

3 Feature Selection: Kiss Signatures

Machine learning algorithms are based on a description of objects summarized
in a vector. The elements of the vector are called features and constitute a de-
scription of all known characteristics of the instance. They play a key role in the
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effectiveness of the machine learning algorithm, i.e., the more descriptive the
features are, the better the performance is. In the past, most of the works con-
sidered a large set of generic features, such as packet/flow length, port number,
round trip time. In this paper, instead, we rely on the signatures defined by Kiss,
a stochastic classifier that we proposed in [11, 12]. The intuition behind Kiss is
that application-layer protocols can be identified by statistically characterizing
the stream of bytes observed in a flow of packets. Kiss builds protocol signatures
by measuring the randomness of groups of bits extracted from the packets pay-
load. Considering an analogy, this process is like recognizing the foreign language
by considering only the cacophony of the conversation, i.e., by letting the proto-
col format emerge, while discarding its actual semantic. Kiss features proved to
be highly descriptive when adopted in supervised machine learning algorithms
for traffic classification.

Kiss signatures are computed over the packets directed to or originated from
a given endpoint. They aim at measuring the randomness of the first bytes of the
packet payload that are those usually carrying application header. In particular,
the first 12 bytes of the packet payload are divided into groups of b = 4 bits,
for a total of G = 24 groups. For each group, the statistic of the occurrence of
each of the 2b = 16 possible values is computed over N = 80 packets. Then,
the randomness of each group g, denoted by Xg, is measured as the Chi-Square
distance of the group statistics with respect to the uniform distribution,

Xg =
2b−1∑

i=0

(Og
i −Ei)

2

Ei
(1)

where Og
i is the observed occurrence of the value i for the g group, and Ei = N/2b

is the expected occurrence for the uniform distribution. Finally, since the value
of Xg grows exponentially with the number of deterministic bits in the group,
and linearly with N [11], we derive,

bg = log2

(
Xg

N
+ 1

)

(2)

where bg represents then the number of constant bits in group g. The vector
{b1, b2, . . . , bG} represents the Kiss signature used in the rest of the paper.

Since Kiss features are obtained from inspection of packet payload, encrypted
application layer protocols may limit the goodness of the features, i.e., all groups
may look like random data. In those cases, it would results impossible to correctly
distinguish two applications that adopt fully encrypted payload.

In summary, each Kiss signature computed from the traffic of an endpoint
corresponds to a “point” in an hyper-space of 24 dimensions. Given then a set of
monitored endpoints and of corresponding Kiss signatures, the objective of this
work is to identify “clouds” of similar points, i.e., to clusterize the signatures with
no a-priori knowledge about the applications that generated the traffic. Resulting
clusters are higher level objects that can be investigated further, and whose
properties naturally extend to each endpoint in it. For example, the clusters
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give indications about how the traffic volume distributes among the regions
suggesting which dataset should be further inspected. Similarly, by constantly
monitoring the galaxy of clouds in time, it would also be possible to identify
traffic shifts due to the rise/decline of applications, to the presence of anomalous
behaviors, or malicious users.

4 Clustering Methodology

Kiss signatures map the traffic generated by applications into points in an hyper-
space. To partition the space into pure clusters where points are generated by the
same application, we leverage on the K-means algorithm, a classic unsupervised
technique [13]. Given a set of K “centroids”, the K-means algorithm iterates over
two steps: it first assigns each point to the closest centroid, defining a cluster;
then, each cluster centroid is re-computed as the arithmetic mean among all
points of the cluster. The algorithm ends either after a predefined number of
iterations or if centroids do not change at a given iteration. At the beginning,
centroids are randomly picked.

The major drawback of K-means is that it assumes the a-priori knowledge
of the number K of clusters one is interested in. The proposed algorithm tries
to overcome this limitation using an agglomerative approach. We start by de-
composing the hyper-space in a large number of clusters, K0. Then, we incre-
mentally merge the two closest clusters until one cluster only remains. A similar
technique was successfully applied to the network measurement context in [14].
The pseudo-code of the algorithm is:

K = K0
centroids, labels = K-means(K, data)
while (K > 1)

c1, c2 = closest_centroids(centroids)
centroids = merge_centroids(centroids, c1, c2)
labels = redo_labeling(data, centroids)
K = K - 1

We start running K-means with K0 = 100 randomly chosen centroids, i.e.,
we force the partitioning of the hyper-space in a large number of small clusters
that are extremely pure. The algorithm then iterates merging at each step the
two closest clusters: at step K, the algorithm looks for the two closest centroids
c1, c2, it merges them into a new centroid positioned at the geometric barycenter
of c1 and c2; then points are reassigned to the new set of K − 1 centroids. The
algorithm continue the aggregation until 2 clusters only remain.

The rationale behind the algorithm is that two centroids which are very close
are likely to be associated to the same final cluster. By monitoring the value of
the closest distance between centroids at each iteration step, and using this as
an indicator function, it is possible to decide the optimal value of K, namely
Kc, to stop at.
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In our scenario, Kc represents the estimated number of protocols that are
present in the dataset. Let the smallest distance between centroids be defined as

γK = (dK − dK−1)
2 (3)

where dK is the Euclidean distance between the two closest centroids at step K
of the algorithm. γK defines our indicator function. Since the distance between
points (and clusters) that correspond to the same protocol is expected to be
smaller than the distance between points that correspond to traffic generated by
different applications, large values of γK suggest that the algorithm is artificially
enforcing the merging of two clusters that are quite different from each other.

Notice that only a single run of K-means is executed at the beginning to ob-
tain the initial set of clusters. At each iteration, the algorithm works only on
the centroids, and this has two main benefits. First, we can better control the
modification on the space due to aggregation. In fact, the K-means algorithm is
subject to “oscillation effect”, i.e., small modifications in the centroid position
could lead to large transformations in the cluster geometry. By using centroids
only we avoid to re-assign samples to centroids, so that the quality of the initial
clustering is better preserved. In addition, by considering centroids only we
reduce the computational cost by several order of magnitudes, we handle O(K0)
centroids instead of O(N) samples (N >> K0). Moreover, the K-means com-
plexity depends on the maximum number of iterations I (which in our case we
set to 100), so that its complexity is O(IN). In our experiments on an AMD
Athlon-64 X2 Dual Core Processor 4200+, we elaborated several thousands of
points present in a 15 minute long traffic traces in less than 3 minutes, the largest
majority of the time being devoted to the initial K-Means run. Given that the
code used can be further optimized, the result is promising and suggests that
the algorithm might be applied to real-time monitoring.

Finally, K-means is known to suffer from the choice of the initial centroid
position. Usually initial centroids are randomly chosen so that different starting
conditions can lead to different clustering. In our scenario, since we select a
large number K0 of clusters, the bias introduced by the selection of the initial
centroids is minimal. We performed some tests by running the algorithm with
different initial random seeds and the results (not reported for the lack of space)
show that there is practically no influence on the initial choice.

5 Experimental Results

5.1 Datasets

The results presented in this paper refer to datasets extracted from two traces,
called ISP-Trace and P2PTV-Trace; the traces are described in Table 1.

ISP-Trace is a real traffic trace collected from the network of an Italian large
ISP which offers converged services, in which data, native VoIP, and IPTV share
a single broadband connection. This dataset is representative of a very heteroge-
neous scenario, in which users are free to use the network without any restriction.
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Table 1. Description of the ISP-Trace (a) and P2PTV-Trace (b)

Protocol #flows ×103 (%) Mbytes (%) #endp. ×103 (%) #sign. ×103(%)

(a)

BitTorrent 217 (3.39) 40 (0.19) 34 (4.14) 22 (0.33)
DNS 260 (4.05) 185 (0.88) 153 (18.79) 31 (0.47)
eMule 5200 (80.96) 936 (4.43) 476 (58.56) 61 (0.91)
RTCP 8 (0.13) 46 (0.22) 6 (0.73) 25 (0.38)
RTP 9 (0.14) 18244 (86.26) 7 (0.86) 6222 (92.14)
Unclassified 728 (11.34) 1698 (8.03) 137 (16.92) 390 (5.78)

tot 6422 (100.00) 21149 (100.00) 813 (100.00) 6751 (100.00)

(b)
PPLive 27 (78.52) 1585 (32.96) 184 (38.90) 23 (28.30)
SopCast 5 (14.87) 2282 (47.43) 176 (37.21) 48 (57.46)
TVants 2 (6.61) 943 (19.61) 113 (23.89) 12 (14.24)
tot 34359 (100.00) 4810 (100.00) 473 (100.00) 83 (100.00)

It therefore is a very challenging scenario for traffic classification. In this paper
we present results considering a dataset obtained monitoring a PoP for 24 hours
in October 2007, during which about 21GB of UDP traffic and 813,000 end-
points were monitored. Some known protocols (BitTorrent, eMule, RTP, RTCP
and DNS) have been extracted from the aggregated trace using Tstat [15], a
traffic classifier that combines a number of DPI mechanisms with statistical
techniques. The classification has been manually cross-checked to have a high
confidence in the ground truth. These protocols account for more than 90% of
the total volume, as shown in Table 1. The remaining 10% of traffic has been
labeled as “unclassified”.

P2PTV-Trace was collected during ad-hoc experiments that were organized
to observe the performance of popular P2P-TV applications, namely PPLive,
SopCast and TVants. The resulting dataset [16] consists of packet level traces
collected from more than 45 PCs running P2P-TV applications in 5 different
Countries, and it is representative of a wide range of different scenarios. Being
the result of active experiments, the trace contains only a single protocol at a
time and we have a perfect knowledge about it.

The datasets extracted from the two traces are disjoint. In fact, there is
no P2P-TV traffic in the ISP-Trace. When needed, we can artificially “inject”
P2P-TV traffic from the P2PTV-Trace into the ISP-Trace to increase the number
of known protocols when assessing the performance of the clustering algorithm.

5.2 Evaluation of the Proposed Approach

Fig. 1(a) shows the evolution of the indicator function during the application of
the algorithm to ISP-Trace considering a 10 minute long trace. The minimum
distance between clusters is very small for values of K > 20, suggesting that
the algorithm is merging clusters whose centroids are very close. Instead, for
K ≤ 20, the algorithm starts merging cluster centroids which are quite far from
each other, suggesting an improper and artificial merging.
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Fig. 1. Evolution of the clustering algorithm: the indicator function (a) and classifica-
tion accuracy in terms of precision and recall (b)

To confirm this intuition, the homogeneity of each cluster is evaluated against
the endpoint classification obtained by Tstat (our ground truth). Fig. 1(b) re-
ports the precision (top) and recall (bottom) performance indexes, defined as

Precision =
true pos

true pos + false pos
Recall =

true pos

true pos + false neg
(4)

for different values of K . Precision is a measure of exactness or fidelity, whereas
recall is a measure of completeness; these two measures complement each other.
A precision of 1.0 for a class C means that every item labeled as belonging to
C does indeed belong to C. It however says nothing about the number of items
from class C that were not labeled correctly. A recall of 1.0 means that every
item from class C was labeled as belonging to class C. It however says nothing
about how many other items were incorrectly labeled as belonging to class C.

Consider Fig. 1(b); two observations hold. First, for K > 20, the fidelity
and completeness of the identified clusters is very high, proving that the Kiss
signatures accurately represent different protocols, and that traffic generated by
different applications can be easily clustered. Second, the abrupt decrease of
both precision and recall observed in Fig. 1(b) for K ≤ 20 confirms that some
clusters corresponding to different protocols are artificially merged, causing the
formation of impure clusters.

To further assess the goodness of the approach, we inspect the behavior of
the indicator function considering datasets in which we progressively add traffic
of various applications. We start by considering a dataset containing only Sop-
Cast and TVants traffic; we then add, in sequence, the traffic of PPLive, RTP,
BitTorrent, DNS and eMule to the dataset. For each traffic mix we run our al-
gorithm. The results are reported in Fig. 2 for K ≤ 20, only. The figure shows
that the indicator function abruptly increases for values of K that are strongly
related with the number of traffic classes. A simple thresholding mechanism on
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Fig. 3. Evolution of the clustering algorithm over different time windows of the ISP-
Trace without (a) and with (b) the unclassified traffic

the indicator function can be adopted to automatically detect the value Kc. As
an example, the figure reports a threshold of 0.15 that resulted very effective in
our tests.

The Table on the right of Fig. 2 reports the suggested number of clusters Kc

obtained with the threshold γ = 0.15, the corresponding recall and precision are
also indicated. Results confirm that the value of Kc increases with the number
of traffic classes. The resulting precision and recall are extremely high, and a
marginal decrease is observed only when considering more than 5 protocols. This
is due to BitTorrent traffic which is sometimes confused with TVants traffic
whose Kiss signatures result similar. Nevertheless, the performance are very
good.

Interestingly, the number of identified clusters is larger than the actual number
of applications. This is due to single applications using multiple protocols with
different formats, e.g., signaling is different respect to data messages. The Kiss
signatures are therefore different, and the clustering algorithm correctly identifies
separate clusters.

Finally, we repeat the experiment considering other different 10-min-long
traces extracted from the ISP-Trace. The goal is to investigate if the indica-
tor function always correctly suggests the number of cluster to use. Fig. 3(a)
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reports the indication functions obtained for the three windows considering the
aggregation of the 7 considered traffic classes. No unclassified traffic is present.
We can see that the suggested Kc is consistent among all the experiments. In-
stead, Fig. 3(b) reports the indicator functions when unclassified traffic is present
too. In this case, since different traffic mixes are present during different periods
of time, higher noise is present with respect to the previous case and different
values Kc are selected in different windows. In conclusion, the indicator function
suggests an optimal number of clusters which changes depending on the actual
traffic mix. Thus, a conservative large number of clusters is preferable, especially
when considering different time windows. Moreover, note that in Fig. 3(b) the
number of suggested clusters is never higher than 40.

5.3 Comparison with Other Clustering Techniques

The automated selection of the optimal number of clusters is not new in litera-
ture. Several score indexes have been proposed to precisely correlate the goodness
of the clustering with the number of used clusters. Examples of these indexes
are: the Bayesian Information Criterion (BIC) adopted by the XMeans algo-
rithm [13] and the Normalized Mutual Information (NMI) [3]. In this work, we
are interested in investigating the automated approaches which do not require
the a-priori knowledge of the points’ labels (that is instead required by the NMI).
We evaluated the performance of both XMeans and NMI; in addition, we con-
sidered also the DBScan algorithm. XMeans shows similar performance as our
algorithm in terms of recall and accuracy. However, the number of identified
clusters is typically much larger than the one obtained by our algorithm. For
example, XMeans accuracy is higher than 95%, but at least 10 more clusters
are identified, i.e., 50% more than with our proposal. Considering NMI, the ac-
curacy is lower than 95% when 25 clusters are used, as suggested by the NMI
technique. With 40 clusters, performance of the NMI-based method is similar to
the one of our algorithm. Finally, DBScan performed poorly achieving only 85%
of accuracy with the best parameter setting.

Notice also that all previous algorithms are computationally more expensive
than our proposal. In conclusion, the proposed algorithm is completely auto-
mated, does not require any knowledge of the points labels and seems a good
trade-off among clustering accuracy, number of clusters and complexity.

5.4 Clusters Distances

In this section, we investigate the geometry of the clusters of points identified by
our algorithm. The results presented in this section are obtained using K = 40
(a conservative large value) and refer to a single time window of ISP-Trace. For
the other time windows, not shown here for the sake of brevity, we obtained
similar results.

We start by considering the size of each cluster. Fig. 4 shows the cumulative
distribution function of the normalized Euclidean distance between each point
and its centroid. As we can see, half of the points in the dataset are very close to
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Fig. 5. Distance between centroids of different clusters, for 40 clusters obtained by
running the algorithm on IPS-Trace with K = 40

theirs centroid, with a distance smaller than 20% of the cluster space size. The
table on the right of Fig. 4 reports some statistics about the clusters geometry
according to the DPI classification. In particular, the second column reports the
number of clusters identified for each application, the third column reports the
number of small clusters, i.e., clusters with a radius smaller that 0.2, and the last
column gives the number of not-dense clusters, i.e., clusters with less than 10
samples. BitTorrent and RTP are mapped into a single cluster, while the “un-
classified” is composed of a set of small, often not-dense, clusters. Interestingly,
eMule is highly partitioned too. Investigating further, we noticed that each clus-
ter corresponds to a different protocol which eMule uses for different purposes,
e.g., one protocol is used to exchange messages with the server, another one is
used to exchange traffic with peers.

To better understand the possible overlapping between the clusters, Fig. 5
reports the distance between pairs of centroids. The distance has been mapped
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onto a gray scale map in which the darker the color is, the nearer the centroids
are. The image is symmetrical with respect to the main diagonal, where all
points have a distance of 0 by definition. Clusters are ordered based on their
type of traffic so that clusters referring to the same application are nearby;
dashed lines are used to delimit the applications. The only blocks which include
nearby clusters are related to the same application.

In conclusion, we can say that the Kiss signatures map different protocols
in different compact clusters of the hyper-space. The geometry of the clouds is
strictly related to the characteristics of the application, but the signatures are
naturally clustered in pure areas which do not overlap.

6 Mining the Unclassified Traffic

In this section we show how the proposed technique can be used to monitor
the traffic evolution in time and detect the presence or absence of traffic in
different periods. To do so, we measure the modifications of the clouds obtained
by running the algorithm over consecutive time windows. We consider 1 hours of
traffic divided into six 10-min-long traces and for each trace we run our algorithm
using K = 40, as previously described. The centroids obtained for each time
window are then compared with centroids identified in the previous time window.
Each centroid is associated to the closest cluster in the previous set according
to their geometric distance. This allows to detect changes between the current
and the previous cluster placement.

Fig. 6 reports some interesting examples; it shows the distance of some selected
centroids in consecutive time windows. For example, the position of centroid A
and centroid B is practically the same over time. Verifying the corresponding
clusters, we found out that samples of cluster A and cluster B are associated to
BitTorrent and RTP, respectively; since in the traffic traces those applications
are always present, the corresponding centroids are always present and more or
less in the same position.

Consider now the case of the cluster with centroid C. The minimum distance
among the centroid C in the first and the second time window is very high,
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suggesting that in the second time window C is associated to a cluster of traffic
that was not present during the previous time window. When comparing centroid
C to its closest centroid at time window 3, we see that it moved very little.
Similarly, considering time windows 3 and 4, centroid C is still referring to the
same cloud of samples. Only in time window 5, the centroid C seems to disappear,
since the closest centroid is very far from its position during time window 4. This
suggests that some new traffic appears at the 2-nd time window, it is present
during the 3-rd and 4-th time window, when it disappears again. Investigating
further, we discovered that the traffic was generated by a Skype call that lasted
for that period of traffic. Centroid C then refers to Skype Voice protocol.

Similar conclusions can be drawn following centroid D and centroid E evo-
lution. Comparing their position during the 4-th and the 5-th window, we can
observe that they moved little, i.e., they refer to the same cluster. Manual inspec-
tion revealed that the traffic of cluster-D corresponds to STUN protocol - Simple
Traversal of User Datagram Protocol that was initiated by some P2P client that
was alive in time window 4 and 5. Centroid E refers, instead, to traffic between
hosts that used port 16567. This latter is composed by both short packets and
much bigger packets, which might be related to Battlefield2 protocol.

Beside these examples, the methodology identified other sets of clusters and
centroids which were always placed in the same zone across consecutive the win-
dows. Some of these clusters were due to long-lived, single connections carrying
many bytes, while others contained P2P-like flows, i.e. endpoints exchanging
limited amount of data with an large number of hosts. Unfortunately, because
of the limited amount of available payload, we are not able to further identify
the application that generated these flows.

These examples show how we could successfully employ our technique to get
insights into the unclassified traffic that Tstat DPI and behavioral classifiers can-
not identify. In terms of traffic volumes, we could correctly identify and clusterize
more than the 40% of unclassified traffic.

7 Conclusion

In this paper, we presented a clustering methodology to partition a traffic aggre-
gate in classes according to the generating application. Using statistical signa-
tures as those of Kiss, one of our classifiers, the methodology (that is completely
unsupervised) is based on the K-Mean clustering algorithm enhanced through a
mechanism to detect the optimal number of clusters.

Results show that the traffic partitions are very accurate. and confirm that the
statistical signatures are effective in capturing the differences among application
protocols. Moreover, our results prove that the methodology can be effectively
used in different contexts. First of all, it is helpful to mine the unclassified traffic,
i.e. the traffic that traditional DPI or a behavioral classifiers cannot recognize.
Indeed, it helped us revealing 40% of the traffic we could not classify with our
classifiers. Second, the algorithm can reveal the born of new applications, as well
as the changes of existing ones.
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session Inference by Means of Clustering Techniques. IEEE/ACM Transactions on
Networking 17(2), 405–416 (2009)

15. Finamore, A., Mellia, M., Meo, M., Munafò, M., Rossi, D.: Live Traffic Monitoring
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Abstract. This paper describes a novel approach to classify network
traffic into encrypted and unencrypted traffic. The classifier is able to
operate in real-time as only the first packet of each flow is processed.
The main metric used for classification is an estimation of the entropy of
the first packet payload. The approach is evaluated based on encrypted
ground truth traces and on real network traces. Encrypted traffic such as
Skype, or encrypted eDonkey traffic are detected as encrypted with prob-
ability higher than 94%. Unencrypted protocols such as SMTP, HTTP,
POP3 or FTP are detected as unencrypted with probability higher than
99.9%. The presented approach, named real-time encrypted traffic de-
tector (RT-ETD), is well suited to operate as pre-filter for advanced
classification approaches to enable their applicability on increased band-
width.

Keywords: entropy estimation, real-time detection, traffic filtering.

1 Introduction

During the last years the diversity of web based applications and their traffic
patterns has increased enormously. This hinders network management activities
which are to a substantial extent based on discriminative treatment of applica-
tion traffic. Available systems for traffic classification are either based on fast
but vague matching of IP addresses, transport protocol and ports or complex
deep packet inspection (DPI) or statistical approaches. Especially applications
that hide the traffic within encrypted communication are difficult to detect.

To detect such hidden applications often complex algorithms have to be per-
formed. Due to the complexity such approaches have to inspect all packets on a
link and consequently are unable to operate on high bandwidth links.

To overcome these shortcomings a fast and simple approach is needed that is
able to pre-filter the traffic. The pre-filtering has the advantage to reduce the
traffic which has to be further inspected to a reasonable amount. To keep the
complexity of the approach low, it is a prerequisite to minimize status infor-
mation. Thus our approach is designed such that pre-filtering of the traffic is
performed upon arrival of the first communication packet (excluding TCP 3way
handshake).

J. Domingo-Pascual, Y. Shavitt, and S. Uhlig (Eds.): TMA 2011, LNCS 6613, pp. 164–171, 2011.
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The classification based on the first packet solely has, beside the aspect of keep-
ing status information low, the main advantage to be operational in real-time.

2 Related Work

In the late 1990s traffic classification was mainly performed on well known port
numbers. Nowadays traffic classification is more and more getting complicated
as an increasing number of applications try to hide its traffic from detection
or classification. As hiding is often performed within encrypted network traffic,
entropy-based classification algorithms have gained interest within the last years.
Entropy-based approaches are often used to detect malicious traffic [1,2].

Lyda and Hamrock [1] use an entropy-based approach called bintropy that is
able to quickly identify encrypted or packed malware. The entropy is used to
identify statistical variation of bytes seen on the network.

Pescape [3] uses entropy to reduce the amount of data that has to be processed
by traffic classification tools. Entropy is used as input for an advanced sampling
approach that ensures that sensible information needed to get an appropriate
model of the network traffic is still present. Packets not needed for an appropriate
model are dropped.

An entropy-based approach which inspired the present work is presented in [2].
The N-truncated entropy for different encrypted protocols is determined. For
example, for an HTTPS connection the byte entropy after 256 bytes of payload
should be between six and seven. If the value for a specific connection is below
this range, it is assumed that the connection is subverted.

In an earlier work [4] we concentrated on the possibility to pre-filter Skype
traffic based on information gathered from the first packet of a flow.

3 Entropy and Entropy Estimation

In 1948 Shannon [5] developed a measure for the uncertainty of a message. This
measure is known as entropy in information theory. Shannon considers the case
where we have a fixed number m of possible events A1, . . . , Am whose probabil-
ities of occurrence p1, . . . , pm are known.

Entropy is defined as

H = −K

m∑

i=1

pi log(pi), (1)

Entropy can be used as a measure of the information content of a message. Equal
probabilities lead to a maximum value for the entropy. Two concepts within data
processing result in a high value of entropy. First data compression, as the bits
needed for data representation should be minimized. Second data encryption,
as any predictable behaviour available in the source data has to be removed.
Both processing steps end with a data stream with equal probabilities for each
event/symbol.
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Within this work we are using entropy as a measure of uniformity. For an
entropy-based test for uniformity an appropriate estimator for the entropy is
needed. But as stated in literature [6] estimating the entropy based on a sample
is hard to retrieve, especially for N < m. Consequently we focus on a uniformity
test which is influenced by entropy but does not need the estimation of the actual
entropy.

Olivain and Goubault-Larrecq [2] present a work where, motivated by the
problems of estimating the entropy based on a sample of length N accordingly,
the N-truncated entropy is used instead. The N-truncated entropy HN (p) is
defined as follows. Generate all possible words w of length N according to p.
Estimate the entropy based on maximum likelihood (MLE) for all words w. The
N-truncated entropy is then the average of the MLE estimates, i.e. sum up all
MLE estimates and divide by the number of words to retrieve HN (p).

According to [2] HN (p), given that pi = 1/m for all i, which means that p
follows the uniform distribution U , HN (U) can be calculated by

HN (U) =
1

mN

∑

n1+...+nm=N

[(
N

n1 + . . . + nm

)

×
(

m∑

i=1

−ni

N
log

ni

N

)]

. (2)

The maximum likelihood estimator can be used as an unbiased estimator of HN .
Checking for uniformity is then straightforward. Based on a sample of length
N estimate the entropy using MLE and compare the result to HN (U). The
closer the estimated value is to HN (U) the more likely is it that the underlying
distribution is uniform. Within our work we are using a Monte-Carlo method
for estimating HN (U) and the confidence intervals.

For very short words this method for detecting uniformity fails. Paninski [7]
states that for a uniformity test N >

√
m samples are needed.

4 Classification

The proposed traffic classifier is based on a 2-stage approach, where the false-
positive rate of the entropy estimation based classifier is reduced by the coding
based classifier.

4.1 Entropy Estimation Based Classification

The entropy estimation based classification is the core classification component
of the whole approach. In contrast to other approaches like [2], only the first
packet that transports payload is used to identify encrypted flows. While on the
one hand this makes it more difficult to calculate an accurate estimate of the
entropy it enables the utilization of this technique in an online fashion, i.e., to
identify encrypted flows in live traffic without the need to buffer or delay packets.

The basic concept of our approach is to estimate the N-truncated entropy of
the actual payload ĤMLE(w) and compare the result to the estimated entropy of
uniformly distributed random payload HN (U) of the same length. The difference
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between these two estimates is used to decide whether the flow is identified as
being encrypted or not. In accordance to Paninski [8] we do not use the entropy
estimation for payload with less than 16 bytes.

In order to preserve most of the encrypted flows we decided to use ĤN (U)±
3 × σĤN (U) as a suitable confidence interval. This should include ĤMLE of ap-
proximately 99.7% of uniformly distributed random payload.

4.2 Coding Based Classification

We assume that for plain text messages the payload is encoded in ASCII or
ANSI where values from 32 to 127 are used for printable characters. Based on
the entropy-based approach text message may look random, consequently we
defined an algorithm that identifies large text blocks within the payload.

The probability that a character from a random source will be in the range
from 32 to 127 is about 37.5%. Especially if at the beginning of the packet a
large fraction of characters is in this range the payload is most likely unencrypted.
Consequently we added a check that if the fraction of bytes with values between
32 and 127 is greater than 75% we assume that the flow is unencrypted.

As we want to reduce the processing time we do not evaluate the full payload
of the packet. For the coding based classifier only the first 96 bytes are evaluated.

5 Algorithm

This section presents the usage of the entropy estimation and coding based
classifiers within a novel approach for traffic classification based on information
solely gathered from content of the first packet of a flow. The first packet in this
context is defined as the first packet sent by a UDP connection and for TCP
the first packet is the one that follows the 3 way handshake. The term flow is
defined as bi-directional flow based on the 5-tuple.

We use a few lists to store information. The SYNList stores all 5-tuples where
we have received a packet with the SYN flag set. A 5-tuple is removed from the
SYNList after receiving the first packet containing payload or receiving a packet
where the FIN flag is set. Furthermore the 5-tuple will be removed from the
SYNList if, 60s after the SYN packet, there has not been any data packet. This
should prevent the SYNList from growing due to SYN flooding attacks.

A TCP or UDP flow which was detected as encrypted will be stored in the
ENCRList. The 5-tuple will be removed upon receiving a packet where the FIN
flag is set. Unencrypted UDP flows are stored in the UNENCRList. The UDP
5-tuples are removed from the lists after 300s inactivity of this 5-tuple.

The first block in Figure 1 ensures that the TCP 3 way handshake for all flows
will be forwarded, as traffic classifiers often need the 3 way handshake to identify
the start of a TCP connection. The 5-tuple of this flow is stored in the SYNList.
This behaviour can be changed to drop the 3 way handshake. The following two
blocks are responsible for forwarding/dropping of packets belonging to flows that
have already been identified as encrypted or unencrypted respectively. If a UDP
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packet is not present in the ENCRList or in the UNENCRList it is the first
packet of a flow. For TCP flows it is checked whether the 5-tuple of the packet is
present in the SYNList, if so the packet is the first packet of a flow and has to be
evaluated. The encrypted check executes entropy and coding based classifier to
determine whether the packet/flow is encrypted or not. If the flow is encrypted
it is added to ENCRList and forwarded, otherwise to the UNENCRList and
dropped. Detailed information about the implementation can be found in [9].

6 Evaluation

For the evaluation we used another traffic classification tool (SPID, Statistical
Protocol IDentification), together with real network traces and traces where the
ground truth is known.

SPID [10] utilizes statistical packet and flow attributes to identify application
layer protocols by comparing probability vectors of these attributes to known
protocol models obtained on controlled training data. As comparison measure,
the Kullback–Leibler divergence together with a threshold is used. SPID is a hy-
brid technique, utilizing generic attributes, which include statistical flow features
(e.g. flow and packet lengths) as well as packet payload characteristics (e.g. byte
frequencies and offsets). With a balanced combination of attributes, SPID was
shown to be very effective in differentiating between encrypted and obfuscated
protocols considered hard to classify [10].

As ground truth traces with encrypted traffic we use a subset of the fully clas-
sified traces of encrypted traffic also used within SPID [10]. Session of encrypted
eDonkey, MSE and Skype protocols (Table 1) have been collected at a domestic
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Table 1. Evaluation based on ground
truth trace, note that more than 94% of
the encrypted traffic is still present in
the filtered file

Flows
Protocol original filtered

eDonkeyTCP encr. 398 94.5%
eDonkeyUDP encr. 828 99.6%
MSE 649 99.2%
SkypeTCP 91 97.8%
SkypeUDP 1973 98.0%

Table 2. Traffic shares of filtered file. The
major fraction of the traffic belongs to
encrypted protocols. SPID encr. includes
all other encrypted protocols classifiable by
SPID.

Traffic amount

SYN + SYN/ACK flows 14.88%
VPN Key exchange 2.91%
VPN data 55.04%
Skype encr. 4.21%
SPID encr. 0.80%
AKAMAI 19.08%
unknown 3.08%

network connection in Sweden by using Proxocket1, which enabled efficient sep-
aration of network traffic on a per-application basis.

Real network traces have been collected in a network of a small cable net-
work provider in a segment used by about 100 customers. Several traces have
been collected in this network, for the evaluation we are using three of them. A
1h/2GB trace, a 7.5h/13GB trace and a 35h/48GB trace. Additionally a 1 hour
trace with a total volume of 13GB from the network of a wireless provider used
by about 1000 customers is used for the evaluation.

Figure 2 shows a schematic representation of the evaluation process. In the
first step the collected trace files are processed by SPID and RT-ETD. The
results of SPID are used as 100% baseline within the individual traffic categories.
The filtered output files from the RT-ETD are then processed by SPID. The
results are then compared to the results based on the original file. The metric
we are using here is the fraction of flows in each category that can still be
detected in the filtered file and the fraction by which the size of the trace file
was reduced by the RT-ETD. An optimal result would be if still 100% of the
encrypted flows are present in the filtered files, and no unencrypted flows are
present.

Table 1 shows the results based on the ground truth traces. The worst results
we get for encrypted eDonkeyTCP traffic, where 2.3% of the missing 5.5% is
dropped due to a packet length of the first packet that is shorter than 16 bytes.
An evaluation of including packets where the length is shorter than 16 bytes is
left open for future work.

Based on the 1h/2GB real network trace we evaluated the usage for the coding-
based classifier for TCP and UDP traffic. Using the coding-based classifier for
UDP traffic does not influence the classification at all.

1 Proxocket is a dll proxy for Winsock that dumps a copy of the network traffic to
and from an application to a pcap file.
(http://aluigi.altervista.org/mytoolz.htm#proxocket)
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For TCP traffic the coding-based classifier removes about 900kByte from the
output file without changing the classification results of SPID. The 900kByte
are plain POP3 flows.

Table 3 shows the results of the evaluation of using our algorithm as pre-
filter for SPID. We are showing results for two traces collected in the cable
provider network, and results for the trace from the WLAN provider network.
An empty entry indicates a 0 count, this category is completely removed, whereas
0% indicates that the fraction is below 0.01%.

Between 73% and 96% of the flows are dropped by our pre-filter. Unencrypted
flows such as FTP, HTTP, IMAP or SMTP are almost completely removed,
which is a strong indication that only a small fraction of unencrypted traffic is for-
warded. For encrypted protocols that we take into account, eDonkey TCP/UDP
encrypted, MSE, Skype TCP/UDP at least 76.7% (MSE) of the flows are still
present in the filtered file. For eDonkey and Skype the fraction is above 93%.
SSH and SSL are detected as unencrypted due to the usage of a plain connec-
tion establishment. Such protocols can be easily detected by state of the art
filtering methods and are thus outside of the scope of our work.

Table 3. Results for SPID pre-filter. The filter reduced the filesize by a factor of about
20. Well known encrypted protocols are removed, whereas a large fraction of encrypted
flows is still present.

7.5h/13GB 35h/48GB 1h/13GB
Type original filtered original filtered original filtered

Filesize [MB] 13531 3.36% 48527 2.94% 13157 12.5%
Sessions 242309 13.0% 1050206 4.37% 195243 27.1%
BitTorrent 64 8067 5061
DNS 30946 91015 22166
eDonkey 7169
eDonkeyTCP encr. 9 100% 36 100% 9653 96.2%
eDonkeyUDP encr. 44 93.2% 95 100% 21808 96.0%
FTP 443 31 24
HTTP 118226 210320 0% 46643
IMAP 248 1861 26
IRC 68 66
ISAKMP 4 3 33% 227
MSE 30 76.7% 280 99.3% 1323 81.7%
MSN 152 19 23
POP 9770 25528 632
SkypeTCP 773 99.5% 1167 99.4% 456 94.1%
SkypeUDP 18945 99.0% 27675 99.2% 6079 98.7%
SMTP 832 1075 53
SpotifyServer 55 74.5% 90 94.4% 306 95.4%
SSH 946 60529 26
SSL 10044 19203 0% 3210
UNKNOWN 50778 23.3% 603144 2.8% 70292 21.2%

For the 1h/2GB real network we performed a detailed analysis on the filtered
file. The trace is reduced to a size of 39.63MByte. Table 2 gives an overview of
the categories that are still present in the filtered file. Almost 15% of the traffic
is SYN+SYN/ACK traffic without any data communication. 63% of the traffic
is encrypted traffic, where for the detection of the Skype traffic we are using the
Adami Skype detector [11]. 19% of the traffic belong to a single flow where a
binary request, invoked by a flash player, requests content from the AKAMAI
distribution network.
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7 Summary and Conclusions

In this paper we have presented how to use information from the first packet of a
flow to identify encrypted traffic. The algorithm consists of two classifiers and can
be used as real-time traffic filter as only the first packet of a flow has to be eval-
uated. The core classifier is based on payload entropy estimation, where entropy
is used as a measure for uniformity which is an indication for encryption. The
algorithm is refined by a further classifier, which takes into account the coding
range used by the ASCII code. The main strength of the approach is its simplicity
and accuracy. Evaluation based on encrypted ground truth traces and real-world
network traces shows that more than 94% of the encrypted traffic is detected as
encrypted, and more than 99% of the unencrypted traffic as unencrypted. Well
known unencrypted protocols such as SMTP, HTTP, FTP, IMAP, POP3 and DNS
are detected as unencrypted with probability as high as 99.9%.

A typical use case for our real-time traffic filter could be to pre-process data
for L7 classifiers2 where the focus is on encrypted flows, or detecting hidden
traffic within encrypted flows. Using our approach the traffic volume that has
to be handled by these classifiers can be reduced by a factor of about 10 to 50,
depending on the traffic matrix.
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Abstract. In this work we apply an accredited standard technique for
end-user bandwidth evaluation in a wired access scenario and show lim-
itations in the bandwidth exploitation of user of optical access networks
due to the computer operating systems.

Keywords: bandwidth estimation, QoS, broadband access networks.

1 Introduction

Fiber To The x (FTTx, where the x can stand for Curb, Building or Home)
accesses allow users to have ever increasing bandwidth, even though it has to be
well understood if they will be able to exploit it in their broadband devices (PC,
USB TV,...). One of the limitations in the exploitation of the access bandwidth
is given by Operating Systems (OS) located in the broadband devices. In par-
ticular, an issue to be addressed regards on how much layer 2 bandwidth can be
really exploited from upper OSI Layers. This topic has been already investigated
in [1], and in [2] a detailed experimental investigation was shown for accesses
based on xDSL, illustrating the impact of different OSes (Microsoft Windows
XP, Microsoft Windows 7, Linux) on end-user bandwidth estimation; moreover,
results showed how such differences were stronger at higher bit-rates. Therefore,
we foresee that such differences will be wider and wider using optical accesses in
FTTx networks.

In this work, we refer to a bandwidth estimation method proposed by Euro-
pean Telecommunications Standards Institute (ETSI) in [3] and we report an
experimental investigation about the role of OSes on the effectiveness of such
bandwidth estimation technique for Gigabit Passive Optical Network (GPON)
[4], i.e. the fiber access technology preferred by many operators.

The extended abstract is structured in the following way: after a description
on the methods to measure the user Quality of Service (QoS) in Section 2, in
Section 3 we report the experimental set-up and in Section 4 results for different
user bit-rates are shown according to three well known OSes.

J. Domingo-Pascual, Y. Shavitt, and S. Uhlig (Eds.): TMA 2011, LNCS 6613, pp. 172–175, 2011.
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2 Bandwidth Exploitation and Measurement in
Broadband Access Networks

Today’s bandwidth estimation plays a key role in telecommunication evolution
and market regulation in order to correctly define service level agreement be-
tween customers and Internet Service Providers (ISP). On the other hand cus-
tomers are interested in network performance verification to better exploit ISP
market competition. For these reasons this study aims for investigating band-
width estimation techniques based on active probes designed considering proto-
cols commonly used by customers: in this way bandwidth estimation matches
the real experienced performance.

In this work, we look at the evaluation of protocol performance and at the im-
pact of software implementation, considering current QoS evaluation best prac-
tice and looking forward at the Next Generation Access Networks (NGAN).
Our method was already used in different access network scenarios, in terms of
access bandwidth and network delay. In particular, in [2, 5] we reported mea-
surements regarding ADSL2+ that is the most adopted technology by Telecom-
munication Operators in Europe. First of all, we consider a specific QoS evalua-
tion technique, based on the ETSI EG 202 057 [3], using File Transfer Protocol
(FTP) [6] probes. In such assumption, the Transmission Control Protocol (TCP)
plays a key role in evaluating performance, since it directly regulates the data
flow. The choice of a TCP dependent technique tries to keep QoS evaluation
as closer as possible to the end-user effective experience of broadband access
services.

3 Experimental Setup

The network test-bed is shown in 1: the core part is composed of four Juniper
M10 (J1, J2, J3, J4) routers fully meshed using the fibers deployed in the cable
Roma-Pomezia-Roma (50 Km with round trip in Pomezia). Server and GPON
Optical Line Termination (OLT) are connected to the core network by means of
two edge routers (Cisco 1, Cisco 2) using fiber Gigabit Ethernet transmission.

To establish an End-to-End controlled bandwidth, we use the technique de-
scribed in [7] that allows us to assign a guaranteed bandwidth between two
end-points of the network by means of different tagging techniques, i.e. Virtual
LAN and Virtual Private LAN Service (VPLS).

In this context, the only parameter taken into account is the network delay,
in order to emulate a wide set of network topologies and conditions in terms of
geographical extension (simplified as network delay). To achieve this goal, a delay
generator is used to obtain different Round Trip Times (RTTs) between Server
and Client. In such tests, a FTP-based QoS estimation tool is implemented in
the three most popular OSes: Windows XP SP3, Windows 7, Linux Ubuntu 10.4.
The aim is to outline the impact of TCP implementation in QoS evaluation and
bandwidth customer exploitation.
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Fig. 1. Test-bed architecture

4 Results

The FTP-based bandwidth evaluation method, as used in our testing activ-
ity, measures FTP Throughput considering data flow between FTP Server pro-
cess and FTP Client process located in different network portions, respectively
provider side and customer side. FTP sessions make possible to estimate data
transmission rate and the transmission delay experimented by downloading and/
or uploading specified test files several times (50 repetitions) between a remote
site and a user’s terminal.

In Fig.2 experimental results are reported, average throughput values are
represented vs. network delays. We considered two typical bandwidth profiles.
In the first one, we considered GPON with 128 users that can provide a physical
bandwidth of about 18 Mbit/s. In the second one, a GPON with up to 32 users
was used, with a physical bandwidth of about 100 Mbit/s.

Fig. 2. TCP connection Throughput evaluation

Like other window-based protocols, such as TCP, performance depend on
RTT; in particular, these results point out that, for specified access conditions,
OSes in client host have a considerable impact on FTP performance.
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Results reported in Fig. 2 outline the critical impact of network delay and
increasing of bit-rates considering TCP protocol implemented in MS Windows
XP. In particular, we noticed a reduction of throughput, with respect to the
nominal one, equal to 50% for 18 Mbit/s profile, and equal to 90% for 100 Mbit/s
profile. Evident substantial differences (Fig. 2) between Win XP and advanced
OSes (Win 7 and Linux) are due to enhanced TCP algorithm implementation,
related to adaptive parameters in the algorithm (i.e. Auto-Tuning of receiver
windows size [8]). Furthermore, it is important to remark that a performance
degradation can be observed also considering advanced OSes for high values of
network delay. For example, for 100 Mbit/s profile, only 65 Mbit/s are measured
by QoS measurement tests when RTT is 60 ms.

5 Conclusion

In this work, we have reported an experimental investigation about the role of
Operating Systems on the bandwidth exploited by GPON users. The results
reported in this paper show that the dependence of the QoS on the Operating
Systems increases with user bit-rates, and how effectiveness of the bandwidth
estimation is affected by considering broadband Optical Access. In particular, we
noticed a reduction of throughput, with respect to the nominal one, up to 50%
for 18 Mbit/s profile, and up to 90% for 100 Mbit/s profile. Therefore, it means
that users could be strongly limited in the exploitation of the bandwidth, and
such limitation is much relevant in case of optical access networks that should
permit very wide bandwidth. As a consequence, we believe that a testing scenario
for FTTx accesses needs to be described not only according to the physical
parameters, but also paying attention to software implementation factors that
could affect the testing results.
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Abstract. This paper presents ongoing work toward the definition of a new net-
work monitoring model which resorts to a cooperative interaction among mea-
surement entities to monitor the quality of network services. Exploring (i) the
definition of representative measurement points to form a network monitoring
overlay; (ii) the removal of measurement redundancy through composition of
metrics; and (iii) a simple active measurement methodology, the proposed model
aims to contribute to a scalable, robust and reliable end-to-end monitoring. Be-
sides the model proposal, a JAVA prototype was implemented to test the concep-
tual model and its design goals.

1 Introduction

Monitoring of large networks raises multiple challenges regarding scalability, robust-
ness and reliability of measurements. It is known that monitoring systems where a
single point is responsible for gathering and processing measurements obtained through-
out the network suffer from severe scalability and robustness limitations. To address
this problem, distributed solutions where monitoring data is collected and processed at
each measurement point (MP) have been proposed. For instance, solutions based on
active edge-to-edge measurements provide a straightforward way of measuring service
quality, however, the potential interference of cross probing among boundary nodes on
network behaviour needs to be carefully considered.

To reduce network overhead and improve spatial coverage, it is important to identify
the most representative and critical network points in order to obtain an overall view of
the network status involving only a subset of MPs. Resorting to composition of metrics
between these MPs, i.e. through concatenation of partial metrics, the interference on
network operation can be reduced, avoiding redundant measurements in overlapping
links. The composition of metrics also allows observing trends, being more informative
as a result of the underlying metric partitioning scheme.

In this context, this paper proposes a collaborative network monitoring overlay which
resorts to the cooperation between representative MPs strategically located in the net-
work to compute performance and quality metrics both intra-area and end-to-end. The
aim is to pursue a flexible, scalable and accurate monitoring overlay solution that sim-
plifies and systematises the cumulative computation of metrics by involving a subset of
network nodes.

J. Domingo-Pascual, Y. Shavitt, and S. Uhlig (Eds.): TMA 2011, LNCS 6613, pp. 176–180, 2011.
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This paper is organised as follows: related work is discussed in Section 2, the pro-
posed monitoring model and its components are described in Section 3, the model pro-
totype is presented in Section 4 and the conclusions are summarised in Section 5.

2 Related Work

Active monitoring carried out on an edge-to-edge basis, i.e., between network bound-
aries, is particularly suitable for monitoring network performance and quality of service
(QoS) [1]. This approach improves scalability by involving only edge nodes in the mon-
itoring process, removing the complexity of monitoring tasks from the network core.
Considering that in edge-to-edge probing, probes from distinct pair of edges may cross
the same links, hop-to-hop monitoring strategies try to avoid repeating probes in those
links. However, capturing network behaviour combining hop-by-hop measures is not an
efficient and easy solution as it involves : (i) a high-degree of metrics’ concatenation;
(ii) monitoring agents in all network nodes; and (iii) additional traffic in the network for
reporting metrics to management stations. To reduce the amount of data exchanged be-
tween management stations and MPs, several solutions have been pointed out, namely
the use of flow aggregation [2], statistical summarisation [3] and network thresholds
crossing alerts [4].

Tomography concepts [5] continue to deserve significant attention for estimating
distinct aspects of network behaviour, including QoS [6,7]. In [8], network tomography
is applied to the definition of a monitoring overlay to infer packet loss in all network
nodes.

Taking in consideration the mentioned strategies, this study proposes a network mon-
itoring overlay solution which resorts to representative MPs to compute performance
and quality metrics both intra- and inter-area, with reduced overhead.

3 A Collaborative Monitoring Overlay

The proposed model relies on a collaborative participation of representative MPs acting
as peers, each one contributing with a disjoint measure component to the evaluation of
the global measure. Thus, end-to-end measurements are obtained through the aggrega-
tion of metrics calculated in each of the network areas involved.

Figure 1 illustrates the monitoring overlay network and the underlying physical
topology. The overlay network consists of representative MPs and these are the only
players taking part in the measurement process. Each MP in the overlay is expected to
store the measurements to its neighbouring MPs. Thus, measurement data is distributed
and stored throughout the overlay network. Based on a monitoring request, each MP
in the measurement path provides the required measures for aggregation in order to
calculate a set of metrics between any specified MPs. Distributing measurement data
over several MPs also enables a rapid recovery of the measurement process by bringing
alternative MPs in the process of rebuilding the measurement path in case of routing or
network topology changes. Note that these changes do not necessarily imply a change
in the overlay topology.
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Fig. 1. Example of measurement between different administrative areas

The proposed model allows measurements at two levels: Intra-area and Inter-area.
Intra-area measurements are carried out on a regular time basis to ensure that MPs in
the same area have a clear view of network status and quality of service. A MP may, at
anytime, send or exchange measurement data between itself and any other MP within
its area. Thus, by retrieving data from multiple MPs in the area and using composition
of metrics, it is possible to calculate the value of a metric for a given measurement path.
Inter-area measurement is performed through the composition of the metrics resulting
from intra-area measurements. Conversely to intra-area operation, this type of measure-
ment does not need to be performed continuously, but on request. This process can be
triggered, for example, by an application signalling process to assess the communica-
tion path before establishing an end-to-end session crossing different network areas.

Model operation - Initially, a monitoring entity sends a message to the initial MP
indicating that it needs to obtain a set of metrics between a pair of MPs (see example
in Figure 1). This MP, after receiving the request, sends it in the overlay network as
a packet measurement request. Each MP in the overlay path will intercept this packet
and attach measurement data between itself and the upstream MP, before sending it to
the downstream MP. This process is repeated until the destination is reached, i.e., each
MP will successively attach its measurement data along the overlay. The final MP or
the destination, upon receiving the packet measurement request, will proceed similarly,
sending subsequently the resulting message back to the initial MP with all collected
measurements. At this point, the initial MP is able to compose the required metrics
in order to obtain end-to-end measures. This operation can assume distinct cumulative
functions (additive, multiplicative, max-min, etc.) depending on the nature of the metric
being evaluated.
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In practice, this process can be considerably simplified as area border MPs (e.g.
MP 12 in Figure 1) may already have up-to-date measurements from the remaining
measurement path. This allows an immediate reply from that MP to the measurement
requester, reducing measuring latency significantly. This process can be further im-
proved through proper pro-active metrics dissemination among inter-area MPs.

One challenge of the present model is to identify the representative MPs. Although
several works target this topic [8,9], this aspect requires further study. Other relevant
aspect currently under study is focused on solutions to avoid measurement data frag-
mentation.

4 The Implemented Prototype

The model prototype was implemented in Java and MySQL, being the measurement
primitives structured in XML. The implementation includes four main components: (i)
the “Measure Requester”; (ii) the “Packet Interceptor”; (iii) the “Measure Processor”;
and (iv) the “Measure Receiver", interacting as illustrated in Figure 2.

Network

Packet
Interceptor

Packet ProcessorMeasure
Receiver

Measure
Requestor Send Request Network Intercepts

D
elivers

Calculate and SendReceive

Fig. 2. Interaction of Model Components

Measure Requester - This component is responsible for initiating the measurement
process between two MPs. In the developed prototype, this is a command line applica-
tion that receives as parameters, the source and destination MP, and the set of metrics
to measure.
Packet Interceptor - This component is responsible for capturing measurement pack-
ets. These packets are differentiated in the network through the use of router alert

option within IPv4 header, avoiding packet processing at upper protocol layers. In a
Linux router, this can be accomplished resorting to proper iptables packet filtering
(it requires the extension xtables-addons). Captured packets are taken from ker-
nel to user space (through libnetfilter_queue) for processing at MPs. The use of
router alert option avoids the use of explicit MP addressing, allowing for a more
flexible overlay topology definition.
Packet Processor - This component is responsible for processing and concatenating
measurement data. Once a packet request is intercepted at an MP, this component de-
tects the new request, validates it and appends the required metrics to the measurement
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packet. This process involves identifying the latter upstream MP before adding its mea-
surement contribution. Then, the component builds an IP packet setting the router

alert option, updates the data payload accordingly and sends the packet to the down-
stream MP. Once the last MP is reached, the "Packet Processor" opens a TCP connection
to the initial MP for sending the aggregate measurement outcome.
Measure Receiver - When the measurement process starts, a measurement packet re-
quest is issued and, simultaneously, the request is stored in a database, remaining in
listening mode on an UDP port. Upon receiving the corresponding measurement result,
this component updates the database for the corresponding request.

5 Conclusions

This paper has presented ongoing work toward the definition of a network monitoring
overlay which resorts to a cooperative interaction among representative MPs to mon-
itor the quality of network services. In the proposed model, measurement overhead
and redundancy are reduced through the composition of metrics from non-overlapping
measurement paths, both intra- and inter-area. This aspect along with the ability to ac-
commodate network topology changes aim to contribute to a scalable and flexible end-
to-end monitoring solution. A JAVA prototype has also been implemented to test the
conceptual design goals of the model, being currently under evaluation in a virtualised
network environment.
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Abstract. Pre-filtering monitoring tasks, directly running over traffic
probes, may accomplish a significant degree of data reduction by isolat-
ing a relatively small number of flows (likely to be of interest for the
monitoring application) from the rest of the traffic. As these filtering
mechanisms are conveniently run as close as possible to the data gath-
ering devices (traffic probes), and must scale to multi-gigabit speed, the
feasibility of their implementation in hardware is a key requirement. In
this paper, we document a hardware FPGA implementation of a re-
cently proposed network scan pre-filter. It leverages processing stages
based on Bloom filters and Counting Bloom Filters, and it is devised
to detect, through on-the-fly per-packet analysis, the flows which poten-
tially exhibit a network/port scanning behaviour. The framework has
been implemented in a modular manner. It suitably combines two dif-
ferent general-purpose modules (a rate meter and a variation detector)
likely to be reused as building blocks for other monitoring tasks. In the
following presentation, we further discuss some lessons learned and gen-
eral implementation guidelines which emerge when the goal is to effi-
ciently implement run-time updated (i.e., dynamic) Bloom-filter-based
data structures in hardware.1

1 Introduction

In high-speed (multi-gigabit) networks, traffic analysis and network monitoring
functions based on the traditional gather-first-process-later paradigm appear
inconvenient. Indeed, the relative number of flows which exhibit a behaviour
worth of detailed investigation can be small with respect to the total amount
of traffic carried over a network link, and monitoring solutions which mandate
to deliver all the captured traffic to a remote device for analysis and inspection
appear to pose a huge and unnecessary demand on the network monitoring
infrastructure.

Starting from the seminal paper from Estan and Varghese [1], a new direction
in traffic monitoring emerged. The idea is to delegate some traffic processing
tasks to traffic probes. Specifically, probes may support traffic analysis functions
whose goal is to detect and isolate flows which exhibit a potentially anomalous
1 This work has been partially supported by the European Commission in the frame

of the DEMONS project http://fp7-demons.eu/
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behaviour, where said “anomalous behaviour” is suitably defined in correspon-
dence of the specific monitoring application goals. As a result, monitoring in-
frastructure scalability is accomplished by dramatically reducing the amount of
data ultimately delivered to remote monitoring applications.

An extensive amount of literature has shown that several meaningful traffic
analysis tasks, such as heavy flows detection [1], traffic classification [2], worm
fingerprinting [3], scan detection [4][5], and so on, can be conveniently performed
“on-the-fly” over a memory/resource-constrained device such as a hardware traf-
fic probe. When such analysis function are implemented as pre-filters, the accu-
racy requirements are somewhat reduced (the goal to provide a final answer is
delegated to the remote monitoring application), and approximate low-resource
consuming data filters and structures, such as those based on Bloom Filters and
their extensions [6], seems very appealing.

Among these papers, our previous work [5] presents a novel method for detect-
ing and accounting for variations, which are usually a component of a more com-
prehensive network scan activity. Specifically, we aim at detecting flows which
exhibit a significant difference, in time, with respect to one or more parameters
(for instance traffic which originates by a same IP source address and “hits” a
large number of IP destinations; ARP requests showing a large IP target vari-
ation; TCP packets addressed to a large amount of ports, etc). It was shown
that this approach may achieve a significant reduction (95 − 98%) in terms of
number of flows which require further fine-grained analysis, meanwhile using a
relatively small amount of memory resources over the traffic probe (order of a
few hundreds of kbits, dependent on the accuracy target).

This work complements our former work [5] by showing how the specific fil-
tering mechanism therein proposed can be implemented on a reprogrammable
hardware device (i.e. FPGA), thus proving the the viability of that approach in
a high speed network monitoring scenario.

2 Architecture

Figure 1 shows the two-stage filtering approach proposed in [5]. For reasons
of space, the reader is referred to the original paper for a detailed functional
explanation. In what follows, we focus on the hardware implementation decisions
concerning each stage, indeed influenced by the need to handle Bloom-type filters
dynamically updated on a per-packet basis.

Fig. 1. Two stage filtering - example for ARP traffic
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Fig. 2. variation detector: Swapping Bloom Filters

2.1 Stage 1: Variation Detector

We recall from [5] that a variation detector can be constructed using two self-
clocked swapping Bloom Filters. The major hardware implementation concern
we had to face consisted in the time needed to reset one of the two Bloom filters
upon filter swapping. Indeed, such reset procedure needed to be accomplished
“instantaneously”, i.e. in the short time frame elapsing between the arrival of
two consecutive packets.

As a solution, we have resorted to implement three Bloom filters instead of
the original two. Such three Bloom filters are in three different operating states:
Detecting, Learning, Cleaning. The filter in Detecting state, for each received
packet, checks if the string obtained by combining the selected flow key (e.g.
the IP source address for network scan) and the selected feature key which is
monitored to identify a variation in the flow (e.g. the IP destination address) is
already stored in the Bloom Filter; if not, it is inserted and the flow is accounted
in the next variation monitor module. The filter in Learning state is updated
according to the same rule, but its output is discarded. The only role of the
Cleaning state is to wipe the content of the filter. Specifically, when the Detecting
filter is full (according to the rules defined in [5]), filter swapping occurs so that
the previously Learning filter becomes the Detecting one, and this latter enters
into Cleaning state.

Note that the development of a supplementary Cleaning filter was a necessary
consequence of our design decision of developing Bloom filters in the FPGA Block
RAM: RAM zeroing in fact requires a number of clock cicles linearly increasing
with the filter dimension, and in any case always greater (for practical filter
sizes) than the time available between two consecutive packets. Specifically we
need a clock cicle to reset 32 bits ( i.e. 1000 clock cicles for Bloom filter of 32000
bits). The alternative solution of implementing the Bloom filters in LUTs was
not considered viable because of FPGA area consumption. The implementation
of 3 Bloom Filters of 32000 bits each would have required the usage of 93% of
the logic resources of a Xilinx Virtex 5 [7].
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2.2 Stage 2: Variation Monitor

The variation monitor is composed of a Counting Bloom Filter (CBF) Block that
receives, as inputs, the flow string signalled by the variation detector as carrying
a new flow/feature pair. Such CBF is transformed into a rate monitor [5] by
periodically decrementing all the filter bins. Again, this specific additional func-
tionality requires a careful hardware implementation, when (as per our choice),
also the CBF is implemented using the Block RAM. Note that a periodic decre-
ment operation, for the same reasons described above, applied to all the CBF
bins requires a large number of memory accesses (further slowed by the need
to perform arithmetic operations over the bin values themselves). However, in
this case, there is no possibility to deploy an associated cleaning filter; rather,
the hardware must make possible to decrement the filter while its state is main-
tained and eventually updated. As a result,we have introduced a pointer to the
last decremented counter together with a compensation circuitry subtracting 1
to the value taken from the bins not yet decremented.

3 Results

The presented paper proposes an implementation of the framework presented in
[5] on a reprogrammable hardware device (i.e. FPGA). Our single-pipe implemen-
tation, on a low-end Virtex II pro [8] reaches the frequency of 183MHz overcoming
the minimum frequency required to process data over a 1Gb/sec link (125MHz).
The achievement of higher rates (in the order of few tens of Gbps) appears easy
by 1) exploiting more performing FPGA, and 2) by designing multiple parallel
processing pipe. The implemented framework exploits a very limited amount of
physical resources. In a Virtex II pro [8] that is a low-end FPGA we need only 20%
of the Block RAM (50 of 232) and the 4% of the Flip-Flop (1920 of 46632). In a
Virtex 5 [7] we exploit 15% of the Block RAM and less then 2% of the Flip-Flop.
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Abstract. This work proposes a method to extend packet pre-filtering
for Network Intrusion Detection Systems (NIDS). The aim of the method
is to avoid the false negatives occurring when a malicious content has
been sent splitted in several packets. In this paper we propose a method
that is able to identify even the fragmented malicious content avoiding
false negative limiting the false positive rate.1

1 Introduction

Network Intrusion Detection Systems (NIDS) like Snort [1] are used for mon-
itoring the presence of different kind of attacks in a network. The packets or
flows carrying these attacks are detected looking for in the header and payload
“malicious content” defined by specific IDS rules. IDS software need high com-
putational resources and processing time to examine all the packets of a network.
These problems strongly limit the usage of IDS in the backbone of Internet Ser-
vice Provider network. The porting of all the components of a software based
IDS to an hardware platform is not feasible. Instead it is possible to identify
some tasks that form one side allow to offload the software IDS and from the
other can be easily implemented in hardware. Starting from this consideration
hardware based packet pre-filtering that allow inspection at wire speed has been
proposed in [2]. The main limitation of this approach is that the it does not
perform any reordering of the packets composing the data stream. The absence
of reordering causes a false negative (i.e. the flow contained an attack is not
identified) when the malicious contents are transmitted in different packets. The
obvious solution to avoid these false negatives is to implement in hardware the
TCP reassembly and IP defragmentation tasks [3]. In Snort [1] this tasks are
accomplished by STREAM5 and Frag3 pre-processors.

The implementation of this task is,however, very complex, and the papers
that describe hardware implementation of TCP/IP reassembly usually can cope
with a very limited number of flows. The solution we propose in this paper
1 This work has been partially supported by the European Commission in the frame
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overcomes the limitation described above preserving a per-packet anomalous
content analysis that allows us to manage the thousand of flow travelling into a
network. Our solution is based on searching also for half-content and limits the
false positive rate by selecting a best content representing each rule.

2 Proposed Strategy

In this section we show how to modify the IDS rules to avoids false negative due
to fragmentation. First of all we apply the method presented in [4] to simplify the
inspected rule taking the most representative content of each rule. This choice
allows to limit the false positive rate due to the use of a relaxed version of the
IDS rules. In Fig. 1 is shown how a content can be split between two packets.
We suppose that the content is at least long L bytes, while the packets whose
payload is longer than L. Three cases can occur:

1. the content is contained in a single packet (Fig. 1 a)
2. the content is equally divided between two packets (Fig. 1 b)
3. one packet contains more than L/2 bytes, the other less than L/2 (Fig. 1 c).

Fig. 1. Different split of a content in consecutive packets

The figure shows that, supposing all the packets longer than L, one of the packet
containing a splitted content has to contain at least L/2 bytes. Moreover we note
that half of the malicious content is contained always in the last L − 1 bytes of
a packet, or in the first L − 1.

To check if a content is present in a flow it is sufficient to check the pres-
ence of the first half part of the content in the last L − 1 bytes of the packet
or the presence of the second half part of the content in the first L − 1 bytes
of a packet. If one of these checks is successful it is possible that a suspicious
content has been sent into the network by using consecutive packets. Forwarding
the flow that contains this packet to the software IDS we are therefore able to
avoid false negative due to fragmented packets. We notice that this method works
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only under the assumption that all the packets had at least a length of L bytes.
In fact, suppose to have a packet with length of L − 2 bytes, an attacker can
split a content L into three packets. This fragmentation can evade the presented
technique. To avoid the problem, we propose to forward to the software IDS the
flows that had a packet with length less than L for further inspection.

3 Experimental Result

This section present the results obtained by applying the method described above
to a realistic network scenario. In this experiment, we fix the parameter L to
twenty and therefore L/2 is set to 10 bytes. In order to validate our results we
select a large subset of the available snort IDS rules [1] to evaluate the false
positive rate of our methodology. The rules has been used to analyze about
700 MBytes of traffic collected on the local area network of the Tor Vergata
University network group. The collected trace is composed by a million of packet
belonging to about 13000 different flows. The rules have been modified in order to
match also the half-content and the begin or at the end of a packet, as described
in the previous section. The packet distribution length is presented in Table 1.

Table 1. Distribution of packet length and number of flow with small packets

packet length (L) number of packets (%) number of flows (%)
< 100 10462 1% 1862 15 %
< 50 7606 0.7 % 1291 10 %
< 20 2786 0.2 % 842 7 %

From the above table we estimate that the 7% of the traffic had a packet with
a length that can not be properly managed by our half-content method. Finally,
we further reduce this amount of flow considering that many of these flows had
as small packet the last packet of the stream, (if the small packet is the last one
the content can not be split in three packets). Fig. 2 depict how a content can
be split between these two packets.

It can be seen that in the second to last packet at least half-content is stored.
Considering this refinement the number of flow that should be forwarded to the
software decrease to 286 (the 2%), because 556 flows had the last packet with
length less than L bytes. In Table 2 the result of our experiment are presented.
The reassembly column use the original set of rules, while the half-content col-
umn use our method.

All the flow detected as suspected (the 507 flows of Table 2) and the ones
composed with small packets ( 286 flows) are sent to an IDS with reassembly for
further analysis. We obtain a total of 793 flows that are detected as suspected
by our method again the Snort IDS that identify only 287 flows. Our method
therefore identifies as flows needing further analysis about 6% (793 flows over
a total of 13000 flows) of the incoming flows, offloading the software from the
analysis of the overall flow travelling into the network.
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Fig. 2. Different split of a content in second to last and last packets

Table 2. Alert generated

Snort with reassembly proposed pre-filtering
inspected flows 13000 13000

flow sent to Snort - 793
flow detected by Snort 287 287

Lost attacks - 0
traffic reduction - 7%

4 Conclusions

In this paper has been presented a methodology that avoids false negative due
to packet fragmentation in packet pre-filtering for NIDS. The experiments per-
formed on real traffic case are presented in order to prove the effectiveness of
our proposed solution. Our measurement shows that our method forwards only
the 6% of the incoming traffic to the second stage of the NIDS.
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Motivation: In the modern Internet, network anomalies are manifold and range
from Distributed Denial of Service (DDoS) attacks over unsolicited communica-
tion (e.g. Spam), to large-scale information harvesting. Network operators react
by deploying carefully selected monitoring equipment, tuned to protect their in-
dividual core assets. Consequently, there exist a multitude of different views on
the activities of a particular host at one moment in time, depending on the locally
observed activity patterns, the configurations of the monitoring equipment, and
the policies and legislations which influence the amount of traffic information
that can be analyzed.

Collaborative monitoring approaches try to benefit from sharing this diverse
information amongst operators. The challenge thereby is to share enough data
while preserving confidential or business-sensitive information. Approaches based
on secure multiparty computation (as e.g. SEPIA [2]) address this problem by
running computations on encrypted data, thereby avoiding to disclose any confi-
dential data. However, this comes at a high computation cost and can therefore
not be used for real-time monitoring tasks that involve vast amounts of data.
Other systems (like e.g. [1]) try to avoid leaking sensitive information by man-
gling it before sharing it with other parties. These anonmyization operations,
in addition to complicating the analysis of the traffic data, implicitly strip all
context information, like monitoring location, configuration parameters of the
detection device, the overall network “health” (i.e., other local network problems
at the same time that could be related?), and specific network characteristics
in normal conditions. In this paper, we assume unavailability of detailed traffic
information, but consider a more realistic setting where operators share notions
of suspiciousness regarding particular Internet hosts. In addition to the principle
of minimum disclosure, we show that this approach has a number of advantages.
Particularly, it leverages the fact that each operator knows its network best, and
can thus give the most reliable verdict about the current activities.

System Overview: COMINDIS stores, maintains, and distributes notions of
suspiciousness (alert levels) about individual Internet hosts, as expressed by a
set of participating Collaboration-enabled Detection Systems (CDS) at differ-
ent autonomous systems (AS). It is built upon five main design principles: (i)
each CDS must contribute in order to receive information (fair sharing); (ii) no
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restrictions should be imposed on the nature or the configuration of a CDS, as
long as it is able to interface with COMINDIS; (iii) no privacy-sensitive informa-
tion should ever leave an AS; (iv) the detection sensitivity can be dynamically
adapted to consider local network conditions and available resources; (v) each
operator should be able to draw his own conclusions locally from the collabora-
tive feedback.

Gray Area. A central idea of this approach is the definition of a so-called Gray
Area of reasoning, which is defined by an upper (UTH) and a lower threshold
(LTH) over the suspiciousness range. UTH is identical to the threshold of a
standalone detection system. All events exceeding UTH are considered suspicious
enough to be immediately investigated, without any further feedback from the
collaborative system, but can still be reported to it. Events below LTH are too
less suspicious to even be sent to the collaborative system, as the mere processing
and communication cost exceed the operator’s resources. Events in the gray area
between the UTH and LTH provide enough evidence to be assigned an alert level,
and trigger requests for additional information. It is important to note that UTH
and LTH can be set arbitrarily by the individual operator, which can also change
them over time in order to adapt to current network activity (e.g. at night, when
less traffic is seen, a lower UTH can increase sensitivity).

After having received the collaborative feedback, a CDS must eventually de-
cide on whether to classify an event as “good” or “bad”. We call the correspond-
ing COMINDIS component the Final Evaluation Function (FEF). FEF takes as
input the collected alert levels for a specific host, plus other information that the
operator considers important, as e.g.: the age of a report, the level of trust in
the remote CDSes or the currently available resources for incident investigation.
The output of FEF is evaluated by using a Final Threshold (FTH), which can
be tuned by the individual operator to match the local requirements.

Architecture. The envisioned system is closed and assumes that CDSes undergo
some initial key exchange procedure to keep their data exchanges secure. A CDS
is by definition any monitoring device that can express an opinion about a cer-
tain Internet host in the form of a suspiciousness score, depending on the traffic
that it observed. A central mediator component (the Report Manager (RM))
receives, stores, and distributes the reports of the individual CDSes. There is no
further centralized analysis foreseen. Figure 1 shows an overview of the proposed
architecture. In this example, one operator owns a powerful analyzer for detect-
ing spammers, while another operator is able to detect DDoS attackers. Both
can express their opinions about the suspiciousness regarding a specific host,
even if their analysis techniques are completely different, and without disclosing
any traffic data. Individually derived alert levels (here: 0.4 and 0.7) are commu-
nicated to the Report Manager. As soon as a CDS commits a report about srcIP
at RM, it is entitled to receive all future and all past reports regarding srcIP,
until the contributed report is flushed from the database.
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Fig. 1. Overview of the COMINDIS architecture

Information Exchange. Each report contains a timestamp, the identifier of the
reporting CDS, the IP address of the suspicious host, and a normalized alert
level. COMINDIS requires CDSes to submit a report before they get notified
asynchronously about other reports concerning the same Internet host. Together
with report rate limitation (enforced by RM), this incentive-driven model ensures
fair sharing of reports. Therefore, operators must provide information about
those hosts they are most interested in (i.e., with the highest local suspiciousness
score), in order to not exceed their report rate quota.

Initial Results: For testing our system under realistic traffic conditions, we
used a well-documented 45-minutes long trace from the OpenPacket repository
that we replayed with the tcpreplay tool. Using the provided network architec-
ture diagram, we assigned the network hosts to four fictive operator networks
[A,B,C,D] and analyzed the inbound traffic. The trace contained 564 unique
traffic sources. For each network we set the thresholds defining the Gray Area
so that all reported events fall in there. Then, we flooded the networks using
five instances of TFN2k tool for DDoS attacks, and tuned the attack rates so
that the corresponding reports fall in the Gray area. First, each TFN2k instance
attacked one host in networks [A,B,C]. After 15 minutes we shifted the attack to
networks [B,C,D], to investigate the effects of collaboration over time. Reports
older than 15 minutes were not taken into account.

Figure 2 shows the results for networks A and B. We evaluate the performance
of the individual standalone probes (so) compared to COMINDIS (coop), and
show for both the average alert levels (avg) for known attackers (true positives –
tp) and legitimate hosts (false positives – fp), over time. For example, the
coop avg tp value shows the average alert level of the attackers, as reported by the
collaborative system. Note that the gain of using COMINDIS is different for each
network, as the received feedback depends on the submitted reports and there-
fore on the individually observed traffic as well as on the CDS’ threshold settings.
We set FTH so to detect 100% of the attackers (see dashed annotated line in
Fig. 2), and compared the standalone vs. the collaborative system performance.
The annotations (x, y, z) should be interpreted as follows: x is the number of false



192 J. Cesareo, A. Berger, and A. D’Alconzo

Fig. 2. Experimental results

positives that are reported by COMINDIS as a consequence of choosing this
threshold. y (z) is the number of false (true) positives that would be reported
by the standalone probe, if it was operated at the same threshold.

During the attack, A experiences no change in detection performance. In this
scenario it is clearly a pure contributor to COMINDIS, as it is able to detect
autonomously all events with high accuracy. However, note that the attackers can
still be detected after 15 minutes (when the attack against A ended), as CDS A
keeps receiving reports from RM. B benefits from the system and reports only at
most one false positive when the standalone system would miss all five attackers.
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Abstract. A number of security-related research topics are based on the moni-
toring of dark IP address space. Unfortunately there is large administrative over-
head associated with the dynamic assignment of a specific subnet for monitoring
purposes, such as the deployment of a honeypot farm or a distributed intrusion
detection system. In this paper, we propose a system that enables the dynamic al-
location of an unadvertised IP address subnet for use by a monitoring sensor. The
system dynamically selects network subnets that have been allocated to the orga-
nization but are not being advertised, advertises them, and subsequently forwards
all received traffic destined to the selected subnet to a monitoring sensor.

1 Introduction

An important area of Internet research focuses on monitoring of computer networks.
Particularly in security-related fields, unused IP address subnets are considered a valu-
able resource which can enable the collection and analysis of attack traffic. By deploy-
ing intrusion detection systems, monitoring systems or honeypot farms (all of which
will be referred to as sensors), researchers can collect vast amounts of traffic data. As
a result, it is very common for researchers across organizations to collaborate and “do-
nate” IP address subnets that are not in use.

The deployment of sensors entails a high administrative overhead. This procedure
consists of several phases. First, if the subnet has been allocated but is not being adver-
tised via some routing protocol, it must be, so that it becomes reachable by neighboring
networks and may receive attack traffic. Next, routing tables inside the internal network
must be altered to forward all traffic destined to the subnet to a specific machine, in our
case the sensor. Finally, in cases where the subnet must be revoked or substituted with
another one, all changes must be done manually which is prone to human error.

To facilitate the dynamic handling of subnets for the deployment of network mon-
itoring sensors, we propose a system that will automate the procedure. The system
will be aware of the dynamic routing protocol that is in effect both inter-domain and
intra-domain, select the unused subnet that will be monitored, advertise it to the appro-
priate neighboring routers, and update routing tables so as to forward incoming traffic
to the sensor. It will also detect when previously unused subnets are advertised, there-
fore claimed for use by the organization, and automatically release the specific subnet
in respect to the privacy of its users.
� This work was supported in part by the project SysSec funded in part by the European Com-

mission, under Grant Agreement Number 257007.
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Our system, consists of 3 different components. The core component of the system is
responsible for managing the other components and keeping an overview of the subnets
used by the organization. It also keeps a history of all subnets advertised by an organi-
zation’s router and decides which unadvertised subnets can be allocated for monitoring.
The second component receives commands from the core component that instructs it
to start advertising subnets that are not being advertised by the organization and which
will be forwarded to the monitoring sensor. It also detects when monitored subnets are
advertised by the organization, and informs the core. The final component receives com-
mands from the core and dynamically alters the organization’s internal routing tables
and adds or removes entries that forward traffic to the monitoring sensor.

2 Related Work

Quagga1 is a free, open-source network routing software suite providing implemen-
tations of protocols such as OSPF, RIP and BGP for Unix platforms. A system with
Quagga installed acts as a dedicated software router. By supporting both OSPF and
BGP it may be used for inter-domain as well as intra-domain routing. Quagga ex-
changes routing information with other, neighboring routers using routing protocols.
It uses this information to update the routing table of the Unix kernel.

MAPI [5] offers an API for generic passive network monitoring based on the network
flow abstraction, which enables users to communicate their needs to the underlying traf-
fic monitoring platform. Moreover, MAPI offers the capability of distributed network
monitoring using multiple remote monitoring sensors, and supports several different
hardware platforms. DECON [3] is a decentralized and scalable coordination system
that aims to solve the problem of flow assignment among a set of monitoring sensors. A
peer-to-peer overlay network receives reports from all sensors that see a specific flow,
and subsequently assigns the flow to one of the sensors based on a first-fit or best-fit
strategy. Luca Deri [1] proposes a new dynamic packet filtering technique which over-
comes the limitation of BPF by allowing users to specify several filters simultaneously
and add or remove filters dynamically without any reconfigurations or downtime. An-
other dynamic packet filter, Swift [6], three orders of magnitude faster than BPF aims
at in-place filter updating.

The Honey@home [4] architecture relies on communities of regular users and orga-
nizations installing a lightweight, traffic redirector that monitors unused IP addresses
and ports. Similarly, Collapsar [2] deploys traffic redirectors in multiple network do-
mains and examines the redirected traffic in a centralized farm of honeypots. In both
cases, deployed probes require some form of initialization regarding the address space
they monitor and are unable to adapt to changes in the network schema.

3 Architecture

The idea behind our system is to enable administrators to deploy a plug-and-play net-
work monitoring solution. The network advertises routing prefixes for the subnets that
are live, i.e., subnets that contain devices that need to communicate with the Internet.

1 http://www.quagga.net/
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Such advertisement already takes place using the existing infrastructure. With the addi-
tion of our monitoring solution, the administrator is required to do nothing more than
connect their components to the network. The only case were some minor action is re-
quired is if the network advertises the dark subnets as well. While this is not the usual
case, if so, the administrator will have to stop it, and advertise only the part of the
network actually being used.

Configuration file. This file contains all the information regarding the specific orga-
nization where the sensor will be deployed. It contains the IP address range that has
been allocated to the organization. Furthermore, information regarding the sensor is
contained, so our system may be able to forward all traffic destined to the monitored
subnet back to the sensor by dynamically altering the necessary routing tables.

Allocator component. This component is responsible for the management of all the
components and dynamically changes the system’s behavior based on messages re-
ceived from the other components. First of all, the Allocator parses the configuration
file and splits the organization’s IP address range into subnets of the specified size.
Based on the available subnets, the core component instructs the Advertiser compo-
nent to monitor all announcements by the organization’s border router. Based on that
information the component can infer which subnets are dark and select one for mon-
itoring. Then, the Advertiser is instructed to start advertising the selected subnet, and
the Updater to update the routing tables and forward all traffic destined to the subnet
back to the sensor. In certain cases, the system will have to dynamically change the
monitored subnet. In those cases, the Allocator instructs the remaining components to
stop all actions and remove all entries concerning the previous subnet. Based on the
announcement history, a new subnet is selected for monitoring and all components are
instructed accordingly.

Advertiser component. This component monitors all announcements by the organi-
zation’s border router and keeps a history of all advertised subnets which it sends to
the Allocator component. In order to do so, the administrator must designate the host
running this component as a “neighboring” router (or peer) to the border router’s con-
figuration. This must be done once during the deployment phase of our system. When
the appropriate instruction is received from the Allocator, the Advertiser starts adver-
tising the selected subnet. As the host running this component does not reside at the
border of the network, the border router must be configured to accept and propagate
advertisements coming from our system. This acts both as a fail-safe and an assurance
towards network administrators that they can be aware, control and block network up-
dates pushed by our system. If at any moment the subnet is advertised from the border
router itself, meaning that the subnet has been selected by the organization to be used,
the Advertiser ceases to advertise the subnet and informs the Allocator.

Updater component. This component is responsible for updating and maintaining the
routing table entries concerning the monitored subnets, in the Unix kernel of the host
routing the advertised subnets of our system. That host is designated as the responsible
router for a given prefix by the Advertiser, during its advertisements. The Allocator
instructs the Updater to create new entries that will forward all traffic arriving at the
routing host, destined to the selected subnet, back to the monitoring sensor. When the
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Fig. 1. System Architecture

system dynamically shifts from one subnet to another, the Updater is instructed to clear
all entries regarding the previous subnet and add entries for the new subnet.

We can see a depiction of the system’s architecture in Figure 1. The Allocator in-
structs (1) the Advertiser to log all subnet announcements from the border router (2)
which are used to update the announcement history (3) and select the subnet that will
be monitored. The Updater is then instructed (4) to alter the routing tables and add en-
tries to the routing tables for the selected subnet (5) so the appropriate traffic can be
forwarded to a sensor (6), such as Honey@home.

4 Conclusion

We presented the design of a system that enables the dynamic allocation of dark address
space for monitoring purposes. Our system aims to facilitate organizations that want to
donate IP address space for monitoring purposes, and allows the automatic handling of
unadvertised IP address subnets. This is work in progress, and we are currently in the
process of implementing a prototype of our system.
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